首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
Er17Ru6Te3 is obtained from high-temperature solid-state reactions in tantalum ampoules. The structure according to single-crystal X-ray diffraction is monoclinic, C2/m (no. 12), Z=4, a=40.185(8) Å, b=3.9969(8) Å, c=16.037(3) Å, β=95.12(3)°, V=2565.5(9) Å3. The condensed structure consists of a complex intermetallic network of intergrown sheets of edge-sharing tetrakaidecahedra (tricapped trigonal prisms, TCTP), and pairs of rectangular-face-sharing bicapped trigonal prisms (BCTP) built of erbium and centered by ruthenium. This array also contains isolated columns of TCTP erbium normal to these sheets that contain tellurium. Basal face sharing of all Er polyhedra along the short b-axis gives rise to the three-dimensional network. Synthesis and the crystal structure of the compound are discussed.  相似文献   

2.
The new quaternary lanthanum copper oxysulfide La3CuO2S3 has been synthesized by the reaction of La2S3 and CuO at 1223 K. This compound crystallizes in space group Pnma of the orthorhombic system with four formula units in a cell of dimensions at 153 K of a=14.0318(7) Å, b=3.9342(2) Å, and c=12.5212(6) Å. The structure of La3CuO2S3 consists of a three-dimensional framework of interconnected LaOnS8−n bicapped trigonal prisms and CuS4 tetrahedra. Optical absorption measurements on a La3CuO2S3 single crystal led to derived band gaps of 2.01 eV in both the [010] and [001] directions.  相似文献   

3.
The new quaternary sulfide La4MnCu6S10 has been synthesized by the reaction of La2S3, MnS, and CuS2 at 1223 K. This compound crystallizes in a new structure type in space group of the triclinic system with one formula unit in a cell of dimensions at 153 K of a=6.6076(3) Å, b=7.3247(3) Å, c=8.7844(4) Å, α=83.457(1)°, β=74.398(1)°, γ=89.996(1)°, and V=406.61(3) Å3. The structure of La4MnCu6S10 consists of a three-dimensional framework of interconnected LaS7 monocapped trigonal prisms, MnS6 octahedra, and CuS4 tetrahedra. Band gaps of 2.49 eV in the [100] direction and 2.53 eV in the [001] direction have been derived from optical absorption measurements on a La4MnCu6S10 single crystal.  相似文献   

4.
Three new tellurites, LaTeNbO6 and La4Te6M2O23 (M=Nb or Ta) have been synthesized, as bulk phase powders and crystals, by using La2O3, Nb2O5 (or Ta2O5), and TeO2 as reagents. The structures of LaTeNbO6 and La4Te6Ta2O23 were determined by single crystal X-ray diffraction. LaTeNbO6 consists of one-dimensional corner-linked chains of NbO6 octahedra that are connected by TeO3 polyhedra. La4Te6M2O23 (M=Nb or Ta) is composed of corner-linked chains of MO6 octahedra that are also connected by TeO4 and two TeO3 polyhedra. In all of the reported materials, Te4+ is in an asymmetric coordination environment attributable to its stereo-active lone-pair. Infrared, thermogravimetric, and dielectric analyses are also presented. Crystallographic information: LaTeNbO6, triclinic, space group P−1, a=6.7842(6) Å, b=7.4473(6) Å, c=10.7519(9) Å, α=79.6490(10)°, β=76.920(2)°, γ=89.923(2)°, Z=4; La4Te6Ta2O23, monoclinic, space group C2/c, a=23.4676(17) Å, b=12.1291(9) Å, c=7.6416(6) Å, β=101.2580(10)°, Z=4.  相似文献   

5.
A new quaternary lanthanide alkaline-earth tellurium(IV) oxide, La2Ba(Te3O8)(TeO3)2, has been prepared by the solid-state reaction and structurally characterized. The compound crystallizes in monoclinic space group C2/c with a=19.119(3), b=5.9923(5), c=13.2970(19) Å, β=107.646(8)°, V=1451.7(3) Å3 and Z=4. La2Ba(Te3O8)(TeO3)2 features a 3D network structure in which the cationic [La2Ba(TeO3)2]4+ layers are cross-linked by Te3O84− anions. Both band structure calculation by the DFT method and optical diffuse reflectance spectrum measurements indicate that La2Ba(Te3O8)(TeO3)2 is a wide band-gap semiconductor.  相似文献   

6.
Two novel ternary intermediate phases, namely URuSi3−x (x=0.11) and U3Ru2Si7 were found in the Si-rich part of the U-Ru-Si phase diagram. Single crystal X-ray diffraction measurements, carried out at room temperature, indicated that URuSi3−x crystallizes in its own tetragonal type structure (space group P4/nmm, no. 129; unit cell parameters: a=12.108(1) Å and c=9.810(1) Å), being a derivative of the BaNiSn3-type structure. U3Ru2Si7 adopts in turn a disordered orthorhombic La3Co2Sn7-type structure (space group Cmmm, no. 65; unit cell parameters: a=4.063(1) Å, b=24.972(2) Å and c=4.072(1) Å). As revealed by magnetization, electrical resistivity and specific heat measurements, both compounds order magnetically at low temperatures. Namely URuSi3−x is a ferromagnet with TC=45 K, and U3Ru2Si7 shows ferrimagnetic behavior below TC=29 K.  相似文献   

7.
Investigations on phase relationships and crystal structures have been conducted on several ternary rare-earth titanium antimonide systems. The isothermal cross-sections of the ternary RE-Ti-Sb systems containing a representative early (RE=La) and late rare-earth element (RE=Er) have been constructed at 800 °C. In the La-Ti-Sb system, the previously known compound La3TiSb5 was confirmed and the new compound La2Ti7Sb12 (own type, Cmmm, Z=2, a=10.5446(10) Å, b=20.768(2) Å, and c=4.4344(4) Å) was discovered. In the Er-Ti-Sb system, no ternary compounds were found. The structure of La2Ti7Sb12 consists of a complex arrangement of TiSb6 octahedra and disordered fragments of homoatomic Sb assemblies, generating a three-dimensional framework in which La atoms reside. Other early rare-earth elements (RE=Ce, Pr, Nd) can be substituted in this structure type. Attempts to prepare crystals in these systems through use of a tin flux resulted in the discovery of a new Sn-containing pseudoternary phase RETi3(SnxSb1−x)4 for RE=Nd, Sm (own type, Fmmm, Z=8; a=5.7806(4) Å, b=10.0846(7) Å, and c=24.2260(16) Å for NdTi3(Sn0.1Sb0.9)4; a=5.7590(4) Å, b=10.0686(6) Å, and c=24.1167(14) Å for SmTi3(Sn0.1Sb0.9)4). Its structure consists of double-layer slabs of Ti-centred octahedra stacked alternately with nets of the RE atoms; the Ti atoms are arranged in kagome nets.  相似文献   

8.
The reaction between PuO2 and SeO2 under mild hydrothermal conditions results in the formation of Pu(SeO3)2 as brick-red prisms. This compound adopts the Ce(SeO3)2 structure type, and consists of one-dimensional chains of edge-sharing [PuO8] distorted bicapped trigonal prisms linked by [SeO3] units into a three-dimensional network. Crystallographic data: Pu(SeO3)2, monoclinic, space group P21/n, a=6.960(1) Å, b=10.547(2) Å, c=7.245(1) Å, β=106.880(9)°, V=508.98(17) Å3, Z=4 (T=193 K), R(F)=2.92% for 83 parameters with 1140 reflections with I>2σ(I). Magnetic susceptibility data for Pu(SeO3)2 are linear from 35 to 320 K and yield an effective moment of 2.71(5) μB and a Weiss constant of −500(5) K.  相似文献   

9.
Undoped and Eu2+ or Ce3+-doped SrYSi4N7 were synthesized by solid-state reaction method at 1400-1660 °C under nitrogen/hydrogen atmosphere. The crystal structure was refined from the X-ray powder diffraction data by the Rietveld method. SrYSi4N7 and EuYSi4N7, being isotypic with the family of compounds MYbSi4N7 (M=Sr, Eu, Ba) and BaYSi4N7, crystallize with the hexagonal symmetry: space group P63mc (No. 186), Z=2, a=6.0160 (1) Å, c=9.7894 (1) Å, V=306.83(3) Å3; and a=6.0123 (1) Å, c=9.7869 (1) Å, V=306.37(1) Å3, respectively. Photoluminescence properties have been studied for Sr1−xEuxYSi4N7 (x=0-1) and SrY1−xCexSi4N7 (x=0-0.03) at room temperature. Eu2+-doped SrYSi4N7 shows a broad yellow emission band peaking around 548-570 nm, while Ce3+-doped SrYSi4N7 exhibits a blue emission band with a maximum at about 450 nm. SrYSi4N7:Eu2+ can be very well excited by 390 nm radiation, which makes this material attractive as conversion phosphor for LED lighting applications.  相似文献   

10.
Crystal structure and anisotropy of the thermal expansion of single crystals of La1−xSrxGa1−2xMg2xO3−y (x=0.05 and 0.1) were measured in the temperature range 300-1270 K. High-resolution X-ray powder diffraction data obtained by synchrotron experiments have been used to determine the crystal structure and thermal expansion. The room temperature structure of the crystal with x=0.05 was found to be orthorhombic (Imma, Z=4, a=7.79423(3) Å, b=5.49896(2) Å, c=5.53806(2) Å), whereas the symmetry of the x=0.1 crystal is monoclinic (I2/a, Z=4, a=7.82129(5) Å, b=5.54361(3) Å, c=5.51654(4) Å, β=90.040(1)°). The conductivity in two orthogonal directions of the crystals has been studied. Both, the conductivity and the structural data indicate three phase transitions in La0.95Sr0.05Ga0.9Mg0.1O2.92 at 520-570 K (Imma-I2/a), 770 K (I2/a-R3c) and at 870 K (R3c-R-3c), respectively. Two transitions at 770 K (I2/a-R3c) and in the range 870-970 K (R3c-R-3c) occur in La0.9Sr0.1Ga0.8Mg0.2O2.85.  相似文献   

11.
The quaternary alkali-metal gallium selenostannates, Na2−xGa2−xSn1+xSe6 and AGaSnSe4 (A=K, Rb, and Cs), were synthesized by reacting alkali-metal selenide, Ga, Sn, and Se with a flame melting-rapid cooling method. Na2−xGa2−xSn1+xSe6 crystallizes in the non-centrosymmetric space group C2 with cell constants a=13.308(3) Å, b=7.594(2) Å, c=13.842(3) Å, β=118.730(4)°, V=1226.7(5) Å3. α-KGaSnSe4 crystallizes in the tetragonal space group I4/mcm with a=8.186(5) Å and c=6.403(5) Å, V=429.1(5) Å3. β-KGaSnSe4 crystallizes in the space group P21/c with cell constants a=7.490(2) Å, b=12.578(3) Å, c=18.306(5) Å, β=98.653(5)°, V=1705.0(8) Å3. The unit cell of isostructural RbGaSnSe4 is a=7.567(2) Å, b=12.656(3) Å, c=18.277(4) Å, β=95.924(4)°, V=1741.1(7) Å3. CsGaSnSe4 crystallizes in the orthorhombic space group Pmcn with a=7.679(2) Å, b=12.655(3) Å, c=18.278(5) Å, V=1776.1(8) Å3. The structure of Na2−xGa2−xSn1+xSe6 consists of a polar three-dimensional network of trimeric (Sn,Ga)3Se9 units with Na atoms located in tunnels. The AGaSnSe4 possess layered structures. The compounds show nearly the same Raman spectral features, except for Na2−xGa2−xSn1+xSe6. Optical band gaps, determined from UV-Vis spectroscopy, range from 1.50 eV in Na2−xGa2−xSn1+xSe6 to 1.97 eV in CsGaSnSe4. Cooling of the melts of KGaSnSe4 and RbGaSnSe4 produces only kinetically stable products. The thermodynamically stable product is accessible under extended annealing, which leads to the so-called γ-form (BaGa2S4-type) of these compounds.  相似文献   

12.
Two new compounds, La5Ti2MS5O7 (M=Cu, Ag) were synthesized and their structures solved from single crystal X-ray data. Both compounds are isotypic. They crystallize in the orthorhombic system (space group Pnma, Z=4) with lattice constants a=19.423(1) Å, b=3.9793(2) Å, c=18.1191(9) Å for La5Ti2CuS5O7, and a=19.593(2) Å, b=3.9963(1) Å, and c=18.2973(15) Å for La5Ti2AgS5O7. The structure of these compounds is built from fragments of the rock-salt, perovskite and fluorite types and a clear anionic segregation of the anions appears in the structure. La5Ti2CuS5O7 and La5Ti2AgS5O7 exhibit an orange-yellow color and measurement of their optical band gap gave 2.02 and 2.17 eV, respectively.  相似文献   

13.
Two new compounds, La3Ru8B6 and Y3Os8B6, were synthesized by arc melting the elements. Their structural characterization was carried out at room temperature on as-cast samples by using X-ray diffractometry. According to X-ray single-crystal diffraction results these borides crystallize in Fmmm space group (no. 69), Z=4, a=5.5607(1) Å, b=9.8035(3) Å, c=17.5524(4) Å, ρ=8.956 Mg/m3, μ=25.23 mm−1 for La3Ru8B6 and a=5.4792(2) Å, b=9.5139(4) Å, c=17.6972(8) Å, ρ=13.343 Mg/m3, μ=128.23 mm−1 for Y3Os8B6. The crystal structure of La3Ru8B6 was confirmed from Rietveld refinement of X-ray powder diffraction data. Both La3Ru8B6 and Y3Os8B6 compounds are isotypic with the Ca3Rh8B6 compound and their structures are built up from CeCo3B2-type and CeAl2Ga2-type structural fragments taken in ratio 2:1. They are the members of structural series R(A)nM3n−1B2n with n=3 (R is the rare earth metal, A the alkaline earth metal, and M the transition metal). Structural and atomic parameters were also obtained for La0.94Ru3B2 compound from Rietveld refinement (CeCo3B2-type structure, P6/mmm space group (no. 191), a=5.5835(9) Å, c=3.0278(6) Å).  相似文献   

14.
In the system BaF2/BF3/PF5/anhydrous hydrogen fluoride (aHF) a compound Ba(BF4)(PF6) was isolated and characterized by Raman spectroscopy and X-ray diffraction on the single crystal. Ba(BF4)(PF6) crystallizes in a hexagonal space group with a=10.2251(4) Å, c=6.1535(4) Å, V=557.17(5) Å3 at 200 K, and Z=3. Both crystallographically independent Ba atoms possess coordination polyhedra in the shape of tri-capped trigonal prisms, which include F atoms from BF4 and PF6 anions. In the analogous system with AsF5 instead of PF5 the compound Ba(BF4)(AsF6) was isolated and characterized. It crystallizes in an orthorhombic Pnma space group with a=10.415(2) Å, b=6.325(3) Å, c=11.8297(17) Å, V=779.3(4) Å3 at 200 K, and Z=4. The coordination around Ba atom is in the shape of slightly distorted tri-capped trigonal prism which includes five F atoms from AsF6 and four F atoms from BF4 anions. When the system BaF2/BF3/AsF5/aHF is made basic with an extra addition of BaF2, the compound Ba2(BF4)2(AsF6)(H3F4) was obtained. It crystallizes in a hexagonal P63/mmc space group with a=6.8709(9) Å, c=17.327(8) Å, V=708.4(4) Å3 at 200 K, and Z=2. The barium environment in the shape of tetra-capped distorted trigonal prism involves 10 F atoms from four BF4, three AsF6 and three H3F4 anions. All F atoms, except the central atom in H3F4 moiety, act as μ2-bridges yielding a complex 3-D structural network.  相似文献   

15.
Two new (NaSrP, Li4SrP2) and two known (LiSrP, LiBaP) ternary phosphides have been synthesized and characterized using single crystal X-ray diffraction studies. NaSrP crystallizes in the non-centrosymmetric hexagonal space group (#189, a=7.6357(3) Å, c=4.4698(3) Å, V=225.69(2) Å3, Z=3, and R/wR=0.0173/0.0268). NaSrP adopts an ordered Fe2P structure type. PSr6 trigonal prisms share trigonal (pinacoid) faces to form 1D chains. Those chains define large channels along the [001] direction through edge-sharing. The channels are filled by chains of PNa6 face-sharing trigonal prisms. Li4SrP2 crystallizes in the rhombohedral space group (#166, a=4.2813(2) Å, c=23.437(2) Å, V=372.04(4) Å3, Z=3, and R/wR=0.0142/0.0222). In contrast to previous reports, LiSrP and LiBaP crystallize in the centrosymmetric hexagonal space group P63/mmc (#194, a=4.3674(3) Å, c=7.9802(11) Å, V=131.82(2) Å3, Z=2, and R/wR=0.0099/0.0217 for LiSrP; a=4.5003(2) Å, c=8.6049(7) Å, V=150.92(2) Å3, Z=2, and R/wR=0.0098/0.0210 for LiBaP). Li4SrP2, LiSrP, and LiBaP can be described as Li3P derivatives. Li atoms and P atoms make a graphite-like hexagonal layer, . In LiSrP and LiBaP, Sr or Ba atoms reside between layers to substitute for two Li atoms of Li3P, while in Li4SrP2, Sr substitutes only between every other layer.  相似文献   

16.
Yb3Cu6Sn5, Yb5Cu11Sn8 and Yb3Cu8Sn4 compounds were prepared in sealed Ta crucibles by induction melting and subsequent annealing. The crystal structures of Yb3Cu6Sn5 and Yb5Cu11Sn8 were determined from single crystal diffractometer data: Yb3Cu6Sn5, isotypic with Dy3Co6Sn5, orthorhombic, Immm, oI28, a=4.365(1) Å, b=9.834(3) Å, c=12.827(3) Å, Z=2, R=0.019, 490 independent reflections, 28 parameters; Yb5Cu11Sn8 with its own structure, orthorhombic, Pmmn, oP48, a=4.4267(6) Å, b=22.657(8) Å, c=9.321(4) Å, Z=2, R=0.047, 1553 independent reflections, 78 parameters. Both compounds belong to the BaAl4-derived defective structures, and are closely related to Ce3Pd6Sb5 (oP28, Pmmn). The crystal structure of Yb3Cu8Sn4, isotypic with Nd3Co8Sn4, was refined from powder data by the Rietveld method: hexagonal, P63mc, hP30, a=9.080(1) Å, c=7.685(1) Å, Z=2, Rwp=0.040. It is an ordered substitution derivative of the BaLi4 type (hP30, P63/mmc). All compounds show strong Cu-Sn bonds with a length reaching 2.553(3) Å in Yb5Cu11Sn8.  相似文献   

17.
Bi2Cu5B4O14 crystallizes in the noncentrosymmetric triclinic space group P1 (No. 1) with cell parameters a=10.1381(11) Å, b=9.3917(11) Å, c=3.4566(4) Å, α=105.570(2)°, β=92.275(2)°, γ=107.783(2)°, Z=1 and R1=0.0401 and wR2=0.0980. It is a layered structure that is built up from sheets of rectangular CuO4 and trigonal BO3 groups. The sheets are connected by infinite chains of edge shared BiO6 polyhedra that intersect the bc plane at an angle slightly greater than 90°. The second-harmonic generation efficiency of Bi2Cu5B4O14, using 1064 nm radiation, is about one half times that of KH2PO4.  相似文献   

18.
The Co2−xCux(OH)AsO4 (x=0 and 0.3) compounds have been synthesized under mild hydrothermal conditions and characterized by X-ray single-crystal diffraction and spectroscopic data. The hydroxi-arsenate phases crystallize in the Pnnm orthorhombic space group with Z=4 and the unit-cell parameters are a=8.277(2) Å, b=8.559(2) Å, c=6.039(1) Å and a=8.316(1) Å, b=8.523(2) Å, c=6.047(1) Å for x=0 and 0.3, respectively. The crystal structure consists of a three-dimensional framework in which M(1)O5-trigonal bipyramid dimers and M(2)O6-octahedral chains (M=Co and Cu) are present. Co2(OH)AsO4 shows an anomalous three-dimensional antiferromagnetic ordering influenced by the magnetic field below 21 K within the presence of a ferromagnetic component below the ordering temperature. When Co2+ is partially substituted by Cu2+ions, Co1.7Cu0.3(OH)AsO4, the ferromagnetic component observed in Co2(OH)AsO4 disappears and the antiferromagnetic order is maintained in the entire temperature range. Heat capacity measurements show an unusual magnetic field dependence of the antiferromagnetic transitions. This λ-type anomaly associated to the three-dimensional antiferromagnetic ordering grows with the magnetic field and becomes better defined as observed in the non-substituted phase. These results are attributed to the presence of the unpaired electron in the dx2y2 orbital and the absence of overlap between neighbour ions.  相似文献   

19.
The low-temperature topotactic reduction of La0.33Sr0.67MnO3 with NaH results in the formation of La0.33Sr0.67MnO2.42. A combination of neutron powder and electron diffraction data show that La0.33Sr0.67MnO2.42 adopts a novel anion-vacancy ordered structure with a 6-layer OOTOOT' stacking sequence of the ‘octahedral’ and tetrahedral layers (Pcmb, a=5.5804(1) Å, b=23.4104(7) Å, c=11.2441(3) Å). A significant concentration of anion vacancies at the anion site, which links neighbouring ‘octahedral’ layers means that only 25% of the ‘octahedral’ manganese coordination sites actually have 6-fold MnO6 coordination, the remainder being MnO5 square-based pyramidal sites. The chains of cooperatively twisted apex-linked MnO4 tetrahedra adopt an ordered -L-R-L-R- arrangement within each tetrahedral layer. This is the first published example of a fully refined structure of this type which exhibits such intralayer ordering of the twisted tetrahedral chains. The rationale behind the contrasting structures of La0.33Sr0.67MnO2.42 and other previously reported reduced La1−xSrxMnO3−y phases is discussed.  相似文献   

20.
A new ternary, intermetallic compound, Ba14Zn5−xAl22+x, was synthesized by heating the pure elements at 900°C. This compound crystallizes in the monoclinic space group I2/m, Z=2, with a=10.474(2) Å, b=6.0834(14) Å, c=34.697(8) Å and β=90.814(4)°. The crystal structure of Ba14Zn5−xAl22+x consists of [Zn5−xAl22+x] slabs that are built with a novel, two-dimensional (2D) network of Zn and Al atoms involving eight-membered rings sandwiched between two layers of trigonal bipyramids interconnected by three-center bonding. Tight-binding, linear muffin-tin orbital (TB-LMTO-ASA) calculations have been performed to understand the relationship between composition and orbital interactions in the electronegative element framework. This new structure is closely related to the high-pressure, cubic Laves-type structure of BaAl2 as well as the ambient pressure binary compound, Ba7Al13. The degree of valence electron charge transfer from the electropositive Ba atoms is related to the Al:Ba molar ratio in the Ba-Zn-Al system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号