首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The title compounds are obtained in high yield from stoichiometric mixtures of Ln, LnI3 and graphite, heated at 900-950 °C in welded Ta containers. The crystal structures of new Pr and Nd phases determined by single-crystal X-ray diffraction are related to those of other Ln12(C2)3I17-type compounds (C 2/c, a=19.610(1) and 19.574(4) Å, b=12.406(2) and 12.393(3) Å, c=19.062(5) and 19.003(5) Å, β=90.45(3)° and 90.41(3)°, for Pr12(C2)3I17 and Nd12(C2)3I17, respectively). All compounds contain infinite zigzag chains of C2-centered metal atom octahedra condensed by edge-sharing into the [tcc] sequence (c=cis, t=trans) and surrounded by edge-bridging iodine atoms as well as by apical iodine atoms that bridge between chains. The polycrystalline Gd12(C2)3I17 sample exhibits semiconducting thermal behavior which is consistent with an ionic formulation (Ln3+)12(C26-)3(I)17(e) under the assumption that one extra electron is localized in metal-metal bonding. The magnetization measurements on Nd12(C2)3I17, Gd12(C2)3I17 and Dy12(C2)3I17 indicate the coexistence of competing magnetic interactions leading to spin freezing at Tf=5 K for the Gd phase. The Nd and Dy compounds order antiferromagnetically at TN=25 and 29 K, respectively. For Dy12(C2)3I17, a metamagnetic transition is observed at a critical magnetic field H≈25 kOe.  相似文献   

2.
Two types of lanthanide selenidoantimonates [Ln(en)4(SbSe4)] (Ln=Ce(1a), Pr(1b)) and [Ln(en)4]SbSe4·0.5en (Ln=Eu(2a), Gd(2b), Er(2c), Tm(2d), Yb(2e); en=ethylenediamine) were solvothermally synthesized by reactions of LnCl3, Sb and Se with the stoichiometric ratio in en solvent at 140 °C. The four-en coordinated lanthanide complex cation [Ln(en)4]3+ formed in situ balances the charge of SbSe43− anion. In compounds 1a and 1b, the SbSe43− anion act as a monodentate ligand to coordinate complex [Ln(en)4]3+ and the neutral compound [Ln(en)4(SbSe4)] is formed. The Ln3+ ion has a nine-coordinated environment involving eight N atoms and one Se atom forming a distorted monocapped square antiprism. In 2a-2e the lanthanide(III) ion exists as isolated complex [Ln(en)4]3+, in which the Ln3+ ion is in a bicapped trigonal prism geometry. A systematic investigation of the crystal structures reveals that two types of structural features of these lanthanide selenidoantimonates are related with lanthanides contraction across the lanthanide series. TG curves show that compounds 1a-1b and 2a-2e remove their organic components in one and two steps, respectively.  相似文献   

3.
A series of new compounds Ln(GaM2+)O4 and Ln(AlMn2+)O4 having a layer structure were successfully prepared [Ln = Lu, Yb, Tm, Er, Ho, and Y, and M = Mg, Mn, Co, Cu, and Zn]. The synthesis conditions and the unit cell parameters for 23 compounds have been determined. These compounds are isostructural with YbFe2O4 (space group R3m, a = 3.455(1) Å, and c = 25.109(2) Å).  相似文献   

4.
Spherical SiO2 particles have been coated with rare earth oxide layers by a Pechini sol-gel process, leading to the formation of core-shell structured SiO2@RE2O3 (RE=rare earth elements) and SiO2@Gd2O3:Ln3+ (Ln=Eu, Tb, Dy, Sm, Er, Ho) particles. X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), photoluminescence (PL), and cathodoluminescence spectra as well as lifetimes were used to characterize the resulting SiO2@RE2O3 (RE=rare earth elements) and SiO2@Gd2O3:Ln3+ (Eu3+, Tb3+, Dy3+, Sm3+, Er3+, Ho3+) samples. The obtained core-shell phosphors have perfect spherical shape with narrow size distribution (average size ca. 380 nm), smooth surface and non-agglomeration. The thickness of shells could be easily controlled by changing the number of deposition cycles (40 nm for two deposition cycles). Under the excitation of ultraviolet, the Ln3+ ion mainly shows its characteristic emissions in the core-shell particles from Gd2O3:Ln3+ (Eu3+, Tb3+, Sm3+, Dy3+, Er3+, Ho3+) shells.  相似文献   

5.
The luminescence of Ce3+, Sm3+, Eu3+, Gd3+, Tb3+, and Dy3+ in NaLn(SO4)2H2O (Ln = lanthanide) is reported. Only Ce3+, Gd3+, and Tb3+ show efficient emission. This is explained in terms of an energy-gap law. Energy transfer is studied in several codoped compositions. The mutual transfer between Gd3+ ions is the only one encountered with high probability. The several transfers are discussed and where possible their rates are calculated.  相似文献   

6.
Bulk and nanosized pyrochlore materials Ln2ZrTiO7 (Ln=La, Eu, Dy, Gd and Sm) have been prepared by the sol-gel method. All the samples were characterized by powder X-ray diffraction, Raman and X-ray photoelectron spectroscopy. Magnetic susceptibility (χ) measurements of Gd2ZrTiO7, Sm2ZrTiO7 and Eu2ZrTiO7 were carried out by vibrating sample magnetometer in the temperature range 2-320 K. The variation of χ−1 (or χ) with temperature of Gd2ZrTiO7, Sm2ZrTiO7 and Eu2ZrTiO7 follows the Curie law, intermediate formula and the Curie-Weiss law, respectively. From the linear portion of χT vs. T−1 plot of Eu2ZrTiO7 from 2 to 15 K, the classical nearest neighbor exchange (Jcl) and dipolar interactions (Dnn) are obtained. The XPS of Ln2ZrTiO7 (Ln=La, Eu, Dy and Gd) gave characteristic peaks for Ln, Ti, Zr and O. The satellite peaks are observed only for 3d La of La2ZrTiO7.  相似文献   

7.
The lanthanide sulphate octahydrates Ln2(SO4)3·8H2O (Ln=Ho, Tm) and the respective tetrahydrate Pr2(SO4)3·4H2O were obtained by evaporation of aqueous reaction mixtures of trivalent rare earth oxides and sulphuric acid at 300 K. Ln2(SO4)3·8H2O (Ln=Ho, Tm) crystallise in space group C2/c (Z=4, aHo=13.4421(4) Å, bHo=6.6745(2) Å, cHo=18.1642(5) Å, βHo=102.006(1) Å3 and aTm=13.4118(14) Å, bTm=6.6402(6) Å, cTm=18.1040(16) Å, βTm=101.980(8) Å3), Pr2(SO4)3·4H2O adopts space group P21/n (a=13.051(3) Å, b=7.2047(14) Å, c=13.316(3) Å, β=92.55(3) Å3). The vibrational and optical spectra of Ho2(SO4)3·8H2O and Pr2(SO4)3·4H2O are also reported.  相似文献   

8.
Subsolidus phase relations in the systems Li2MoO4-K2MoO4-Ln2(MoO4)3 (Ln=La, Nd, Dy, Er) were determined. Formation of LiKLn2(MoO4)4 was confirmed in the systems with Ln=Nd, Dy, Er at the LiLn(MoO4)2-KLn(MoO4)2 joins. No intermediate phases of other compositions were found. No triple molybdates exist in the system Li2MoO4-K2MoO4-La2(MoO4)3. The join LiLa(MoO4)2-KLa(MoO4)2 is characterized by formation of solid solutions.Triple molybdates LiKLn2(MoO4)4 for Ln=Nd-Lu, Y were synthesized by solid state reactions (single phases with ytterbium and lutetium were not prepared). Crystal and thermal data for these molybdates were determined. Compounds LiKLn2(MoO4)4 form isostructural series and crystallized in the monoclinic system with the unit cell parameters a=5.315-5.145 Å, b=12.857-12.437 Å, c=19.470-19.349 Å, β=92.26-92.98°. When heated, the compounds decompose in solid state to give corresponding double molybdates. The dome-shaped curve of the decomposition temperatures of LiMLn2(MoO4)4 has the maximum in the Gd-Tb-Dy region.While studying the system Li2MoO4-K2MoO4-Dy2(MoO4)3 we revealed a new low-temperature modification of KDy(MoO4)2 with the triclinic structure of α-KEu(MoO4)21 (a=11.177(2) Å, b=5.249(1) Å, c=6.859(1) Å, α=112.33(2)°, β=111.48(1)°, γ=91.30(2)°, space group , Z=2).  相似文献   

9.
The phosphors NaGdFPO4:Ln3+ and GdPO4:Ln3+ (for Ln3+=Ce3+ and Tb3+) were prepared by solid-state reaction technique, the VUV-vis spectroscopic properties of the phosphors were investigated, and we vividly compare the luminescence of Ce3+ and Tb3+ in the hosts. For phosphors GdPO4:Ln3+, the band near 155 nm in VUV excitation spectrum is assumed to be the host-related absorption, and for NaGdFPO4:Ln3+ the absorption is moved to longer wavelength, near 170 nm, showing the P-O bond covalency increased after fluoridation. The f-d transitions of Ce3+ and Tb3+ in the host lattices are assigned and corroborated, and it was found that the 5d states are with lower energy in NaGdFPO4:Ln3+ than those in GdPO4:Ln3+. For fluoridation of GdPO4:Ln3+ to NaGdFPO4:Ln3+, the energy change of Ln3+ (Ln=Ce, Tb) 5d states is consistent with that of host-related absorption.  相似文献   

10.
A linear tetranuclear CuII-GdIII-CuII-GdIII complex [CuIILdpen(meso)GdIII(thd)2(H2O)]2 was synthesized from the reaction of [NaCuIILdpen(meso)(DMF)] with [GdIII(thd)3(H2O)2], and the structures and magnetic properties were investigated, where H3Ldpen(meso) = meso-1,2-diphenyl-1-(2-hydroxybenzamido)-2-(2-hydroxy-3-ethoxybenzylideneamino)ethane and Hthd = 2,2,6,6-tetramethyl-3,5-heptanedione. The CuII complex component [NaCuIILdpen(meso)(DMF)] has a one-dimensional (1D) chain structure, in which the Na+ ion is coordinated by two phenoxo and an ethoxy oxygen atoms of a CuII complex and an amido oxygen atom of the adjacent CuII unit to produce the 1D structure, in which the diphenylethylenediamine moieties have the array of {(1R,2S)-Na-(1S,2R)}1∞. The assembly reaction of the CuII and GdIII components gave a linear complex with the array of Cu(1)-Gd(1)-Cu(2)-Gd(2), in which two diphenylethylenediamine moieties have the same chirality of (1R,2S)-(1R,2S) or (1S,2R)-(1S,2R). Two linear Cu(1)-Gd(1)-Cu(2)-Gd(2) units are linked by hydrogen bonds through two water molecules to give a cyclic structure with a center of symmetry. The temperature dependence of the magnetic susceptibilities and field-dependent magnetization revealed the ferromagnetic interaction between the CuII and GdIII ions within the linear chain.  相似文献   

11.
Crystalline cobalticyanides LnCoIII(CN)6·nH2O with Ln = La,…, Lu, Y have been synthesized by a double-infusion technique. In analogy to the Cr and Fe compounds, the large rare-earth ions form a hexagonal modification while the smaller ions lead to the orthorhombic structure with 4H2O. Experiments show that no magnetic ordering occurs down to 1°K. The Stark splitting of the J ground state due to the crystalline field is analyzed for the Ce and Sm compounds.  相似文献   

12.
Heterometal hexanuclear manganese-lanthanide complexes, [MnIII2LnIII44-O)2(Hbemp)2(OMe)2(OAc)8nH2O (Ln = Lu (1, n = 1) and Tm (2, n = 5), H3bemp = 2,6-bis[N-(2-hydroxyethyl)iminomethyl]-4-methylphenol), were prepared and their magnetic properties were examined. The Mn2Ln4 units at the cluster cores consist of one central MnIII2LnIII2O4 cubane unit and two lanthanide(III) ions bridged by μ2-phenoxo groups of the ligands, and μ2-methoxo and μ4-oxo groups, forming the Mn2Ln4 hexanuclear cluster. Magnetic susceptibility measurements revealed that antiferromagnetic interactions were operative between metal centres.  相似文献   

13.
Use of Nd3+, Eu3+, and Gd3+ as local structural probes allows the determination of the rare earth positions in the NaxSr3?2xLnx(PO4)2 (Ln = La to Tb) and KCaLn(PO4)2 phases (Ln = rare earth). Moreover, a common feature of both series is a particularly high splitting of the excitation 6P72 and 6P52 levels of the Gd3+ ions.  相似文献   

14.
We present an efficient way to search a host for ultraviolet (UV) phosphor from UV nonlinear optical (NLO) materials. With the guidance, Na3La2(BO3)3 (NLBO), as a promising NLO material with a broad transparency range and high damage threshold, was adopted as a host material for the first time. The lanthanide ions (Tb3+ and Eu3+)-doped NLBO phosphors have been synthesized by solid-state reaction. Luminescent properties of the Ln-doped (Ln=Tb3+, Eu3+) sodium lanthanum borate were investigated under UV ray excitation. The emission spectrum was employed to probe the local environments of Eu3+ ions in NLBO crystal. For red phosphor, NLBO:Eu, the measured dominating emission peak was at 613 nm, which is attributed to 5D0-7F2 transition of Eu3+. The luminescence indicates that the local symmetry of Eu3+ in NLBO crystal lattice has no inversion center. Optimum Eu3+ concentration of NLBO:Eu3+ under UV excitation with 395 nm wavelength is about 30 mol%. The green phosphor, NLBO:Tb, showed bright green emission at 543 with 252 nm excited light. The measured concentration quenching curve demonstrated that the maximum concentration of Tb3+ in NLBO was about 20%. The luminescence mechanism of Ln-doped NLBO (Tb3+ and Eu3+) was analyzed. The relative high quenching concentration was also discussed.  相似文献   

15.
Ternary rare earth antimonates Ln3SbO7 (Ln=rare earths) were prepared and their structures were determined by X-ray diffraction measurements. They crystallize in an orthorhombic superstructure of cubic fluorite (space group Cmcm for Ln=La, Pr, Nd; C2221 for Ln=Nd-Lu), in which Ln3+ ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated sites). Their magnetic properties were characterized by magnetic susceptibility and specific heat measurements from 1.8 to 400 K. The Ln3SbO7 (Ln=Nd, Gd-Ho) compounds show an antiferromagnetic transition at 2.2-3.2 K. Sm3SbO7 and Eu3SbO7 show van Vleck paramagnetism. Measurements of the specific heat down to 0.4 K for Gd3SbO7 and the analysis of the magnetic specific heat indicate that the antiferromagnetic ordering of the 8-coordinated Gd ions occur at 2.6 K, and the 7-coordinated Gd ions order at a furthermore low temperature.  相似文献   

16.
Oxy-silicate and oxy-germanate, Ln2(TO4)O (Ln=La and Nd, T=Ge and Si) compounds have been prepared. Oxy-germanates can be readily obtained as highly crystalline single phases, while, the oxy-silicates are difficult to prepare as pure phases. The crystal structure of Nd2(SiO4)O has been studied from a joint Rietveld refinement of neutron and laboratory X-ray powder diffraction data. The electrochemical characterisation indicates that these compounds display oxide anion conductivity with p-type electronic contribution under oxidising conditions. The apparent activation energies under dry flowing nitrogen, where p-type contribution is minimised, are 0.97(1), 1.05(3) and 1.17(4) eV, for Nd2(SiO4)O, La2(GeO4)O and Nd2(GeO4)O, respectively. The overall conductivities at 1173 K range from 1.2×10−4 S cm−1 for Nd2(SiO4)O to 1.3×10−6 S cm−1 for La2(GeO4)O. Finally, the stability of these compounds under very reducing conditions has been studied and partial degradation is reported.  相似文献   

17.
The standard molar Gibbs energies of formation of LnFeO3(s) and Ln3Fe5O12(s) where Ln=Eu and Gd have been determined using solid-state electrochemical technique employing different solid electrolytes. The reversible e.m.f.s of the following solid-state electrochemical cells have been measured in the temperature range from 1050 to 1255 K.Cell (I): (−)Pt / {LnFeO3(s)+Ln2O3(s)+Fe(s)} // YDT/CSZ // {Fe(s)+Fe0.95O(s)} / Pt(+);Cell (II): (−)Pt/{Fe(s)+Fe0.95O(s)}//CSZ//{LnFeO3(s)+Ln3Fe5O12(s)+Fe3O4(s)}/Pt(+);Cell (III): (−)Pt/{LnFeO3(s)+Ln3Fe5O12(s)+Fe3O4(s)}//YSZ//{Ni(s)+NiO(s)}/Pt(+);andCell(IV):(−)Pt/{Fe(s)+Fe0.95O(s)}//YDT/CSZ//{LnFeO3(s)+Ln3Fe5O12(s)+Fe3O4(s)}/Pt(+).The oxygen chemical potentials corresponding to the three-phase equilibria involving the ternary oxides have been computed from the e.m.f. data. The standard Gibbs energies of formation of solid EuFeO3, Eu3Fe5O12, GdFeO3 and Gd3Fe5O12 calculated by the least-squares regression analysis of the data obtained in the present study are given byΔfm(EuFeO3, s) /kJ mol−1 (± 3.2)=−1265.5+0.2687(T/K)   (1050 ? T/K ? 1570),Δfm(Eu3Fe5O12, s)/kJ mol−1 (± 3.5)=−4626.2+1.0474(T/K)   (1050 ? T/K ? 1255),Δfm(GdFeO3, s) /kJ mol−1 (± 3.2)=−1342.5+0.2539(T/K)   (1050 ? T/K ? 1570),andΔfm(Gd3Fe5O12, s)/kJ·mol−1 (± 3.5)=−4856.0+1.0021(T/K)   (1050 ? T/K ? 1255).The uncertainty estimates for Δfm include the standard deviation in the e.m.f. and uncertainty in the data taken from the literature. Based on the thermodynamic information, oxygen potential diagrams for the systems Eu-Fe-O and Gd-Fe-O and chemical potential diagrams for the system Gd-Fe-O were computed at 1250 K.  相似文献   

18.
Magnetic properties and structural transitions of ternary rare-earth transition-metal oxides Ln3MO7 (Ln=rare earths, M=transition metals) were investigated. In this study, we prepared a series of molybdates Ln3MoO7 (Ln=La-Gd). They crystallize in an orthorhombic superstructure of cubic fluorite with space group P212121, in which Ln3+ ions occupy two different crystallographic sites (the 8-coordinated and 7-coordinated sites). All of these compounds show a phase transition from the space group P212121 to Pnma in the temperature range between 370 and 710 K. Their magnetic properties were characterized by magnetic susceptibility measurements from 1.8 to 400 K and specific heat measurements from 0.4 to 400 K. Gd3MoO7 shows an antiferromagnetic transition at 1.9 K. Measurements of the specific heat for Sm3MoO7 and the analysis of the magnetic specific heat indicate a “two-step” antiferromagnetic transition due to the ordering of Sm magnetic moments in different crystallographic sites, i.e., with decreasing temperature, the antiferromagnetic ordering of the 7-coordinated Sm ions occur at 2.5 K, and then the 8-coordinated Sm ions order at 0.8 K. The results of Ln3MoO7 were compared with the magnetic properties and structural transitions of Ln3MO7 (M=Nb, Ru, Sb, Ta, Re, Os, or Ir).  相似文献   

19.
The potassium lanthanide double sulphates KLn(SO4)2·H2O (Ln=La, Nd, Sm, Eu, Gd, Dy) were obtained by evaporation of aqueous reaction mixtures of rare earth (III) sulphates and potassium thiocyanate at 298 K. X-ray single-crystal investigations show that KLn(SO4)2·H2O (Ln=Nd, Sm, Eu, Gd, Dy) crystallise monoclinically (Ln=Sm: P21/c, Z=4, a=10.047(1), b=8.4555(1), c=10.349(1) Å, wR2=0.060, R1=0.024, 945 reflections, 125 parameters) while KLa(SO4)2·H2O adopts space group P3221 (Z=3, a=7.1490(5), c=13.2439(12) Å, wR2=0.038, R1=0.017, 695 reflections, 65 parameters). The coordination environment of the lanthanide ions in KLn(SO4)2·H2O is different in the case of the Nd/Sm/Gd and the Eu/Dy compounds, respectively. In the first case the Ln atoms are nine-fold coordinated in contrast to the latter where the Ln ions are eight-fold coordinated by oxygen atoms. The vibrational spectra of KLn(SO4)2·H2O and the UV-vis reflection spectra of KEu(SO4)2·H2O and KNd(SO4)2·H2O are also reported.  相似文献   

20.
Ternary rare earth oxides EuLn2O4 (Ln=Gd, Dy-Lu) were prepared. They crystallized in an orthorhombic CaFe2O4-type structure with space group Pnma. 151Eu Mössbauer spectroscopic measurements show that the Eu ions are in the divalent state. All these compounds show an antiferromagnetic transition at 4.2-6.3 K. From the positive Weiss constant and the saturation of magnetization for EuLu2O4, it is considered that ferromagnetic chains of Eu2+ are aligned along the b-axis of the orthorhombic unit cell, with neighboring Eu2+ chains antiparallel. When Ln=Gd-Tm, ferromagnetically aligned Eu2+ ions interact with the Ln3+ ions, which would overcome the magnetic frustration of triangularly aligned Ln3+ ions and the EuLn2O4 compounds show a simple antiferromagnetic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号