首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Guoqi Liu  Fuhui Liao 《Acta Physico》2008,24(11):1945-1949
A new compound dicetyltrimethylammonium hexafluorotitanium dihydrate, [(n-C16H33)N(CH3)3]2[TiF6]·2H2O (compound 1), was hydrothermally synthesized at 150 °C and characterized by single crystal X-ray diffraction, Fourier-transform infrared (FTIR) spectroscopy, elemental analysis, and thermogravimetric analysis. Compound 1 crystallizes in the monoclinic system, space group C2/c. It consists of hexafluorotitanium cations [TiF6]2−, water molecular (H2O), and cetyltrimethylammonium ions [(n-C16H33)N(CH3)3]+, which are connected together by extensive hydrogen bonding.  相似文献   

2.
The X-ray crystal structures of a series of new compounds (H3O)2[{Mn(H2O)1.5}3{Re6Se8(CN)6}2]·19H2O (1), (Me4N)2[{Co(H2O)1.5}3{Re6S8(CN)6}2]·13H2O (2), (Me4N)2[{Co(H2O)1.5}3{Re6Se8(CN)6}2]·3H2O (3), (Et4N)2[{Mn(H2O)2}3{Re6Se8(CN)6}2]·6.5H2O (4), (Et4N)2[{Ni(H2O)2}3{Re6S8(CN)6}2]·6.5H2O (5), and (Et4N)2[{Co(H2O)2}3{Re6S8(CN)6}2]·10H2O (6) are reported. All six compounds are isostructural crystallizing in cubic space group with four formulae per unit cell. For compounds 1, 3-5 the following parameters were found: (1) a=19.857(2) Å, R1=0.0283; (3 at 150 K) a=19.634(1) Å, R1=0.0572; (4) a=20.060(2) Å, R1=0.0288; (5) a=19.697(2) Å, R1=0.0224. The structures consist three-dimensional cyano-bridged framework formed by cyano cluster anions [Re6Q8(CN)6]4−, Q=S, Se and transition metal cations, M2+=Mn2+, Co2+, Ni2+. Water molecules and large organic cations Me4N+ and Et4N+ are included in cavities of this framework. Porosity of the framework, its ability to accommodate different cations and water molecules by little changes in the structure, as well as distortion of coordination framework under loss of water of crystallization is discussed.  相似文献   

3.
Partial replacement of alkaline metals in anhydrous KCa2Ta3O10 and LiCa2Ta3O10 was studied to control interlayer hydration and photocatalytic activity for water splitting under UV irradiation. A1−xNaxCa2Ta3O10·nH2O (A′=K and Li) samples were synthesized by ion exchange of CsCa2Ta3O10 in mixed molten nitrates at 400 °C. In K1−xNaxCa2Ta3O10·nH2O, two phases with the orthorhombic (C222) and tetragonal (I4/mmm) structures were formed at x?0.7 and x?0.5, respectively. Upon replacement by Na+ having a larger enthalpy of hydration (ΔHh0), the interlayer hydration occurred at x?0.3 and the hydration number (n) was increased monotonically with an increase of x. Li1−xNaxCa2Ta3O10·nH2O showed a similar hydration behavior, but the phase was changed from I4/mmm (x<0.5, n∼0) via P4/mmm (x∼0.5, n∼1) to I4/mmm (x∼1.0, n∼2). The photocatalytic activities of these systems after loading 0.5 wt% Ni were quite different each other. K1−xNaxCa2Ta3O10·nH2O exhibited the activity increasing in consistent with n, whereas Li1−xNaxCa2Ta3O10·nH2O exhibited the activity maximum at x=0.77, where the rates of H2/O2 evolution were nearly doubled compared with those for end-member compositions (x=0 and 1).  相似文献   

4.
The room temperature structures of the five layer Aurivillius phases A2Bi4Ti5O18 (A=Ca, Sr, Ba and Pb) have been refined from powder neutron diffraction data using the Rietveld method. The structures consist of [Bi2O2]2+ layers interleaved with perovskite-like [A2Bi2Ti5O16]2− blocks. The structures were refined in the orthorhombic space group B2eb (SG. No. 41), Z=4, and the unit cell parameters of the oxides are a=5.4251(2), b=5.4034(1), c=48.486(1); a=5.4650(2), b=5.4625(3), c=48.852(1); a=5.4988(3), b=5.4980(4), c=50.352(1); a=5.4701(2), b=5.4577(2), c=49.643(1) for A=Ca, Sr, Ba and Pb, respectively. The structural features of the compounds were found similar to n=2-4 layers bismuth oxides. The strain caused by mismatch of cell parameter requirements for the [Bi2O2]2+ layers and perovskite-like [A2Bi2Ti5O16]2− blocks were relieved by tilting of the TiO6 octahedra. Variable temperature synchrotron X-ray studies for Ca and Pb compounds showed that the orthorhombic structure persisted up to 675 and 475 K, respectively. Raman spectra of the compounds are also presented.  相似文献   

5.
The aqueous synthesis and electrochemical properties of nanocrystalline MxV2O5Ay·nH2O are described. It is easily and quickly prepared by precipitation from acidified vanadate solutions. MxV2O5Ay·nH2O has been characterized by X-ray powder diffraction, electron microscopy, TGA, chemical analyses, and electrochemical studies. The atomic structure is related to that of xerogel-derived V2O5·nH2O. In MxV2O5Ay·nH2O, M is a cation from the starting vanadate salt and A is an anion from the mineral acid. This material exhibits high, reversible Li capacity and may be considered for use in a cathode in primary and secondary batteries. The lithium capacity of an electrode composed of MxV2O5Ay·nH2O/EPDM/carbon (88/4/8) is ∼380(mA h)/g (C/80 rate) and the energy density is ∼1000(W h)/kg (120-μm-thick cathode, 4-1.5 V, versus Li metal anode). Critical parameters identified in the synthesis of MxV2O5Ay·nH2O, with respect to achieving high Li-ion insertion capacity, are acid/vanadium ratio, starting vanadate salt, and temperature. Inclusion of carbon black in the synthesis yields a composite that maintains the high Li capacity, lowers the electrochemical-cell polarization, and preserves the lithium capacity at higher discharge rates. Li-ion coin cells, using pre-lithiated graphite anodes, exhibit electrochemical performance comparable to that of Li-metal coin cells.  相似文献   

6.
Two new tellurites, NH4RbTe4O9·2H2O and NH4CsTe4O9·2H2O have been synthesized and characterized. The compounds were synthesized hydrothermally, in near quantitative yields, using the alkali metal halide, TeO2, and NH4OH as reagents. The iso-structural materials exhibit layered, two-dimensional structural topologies consisting of TeOx (x=3, 4, or 5) polyhedra separated by NH4+, H2O, Rb+ or Cs+ cations. Unique to these materials is the presence of TeO3, TeO4, and TeO5 polyhedra. Thermogravimetric and infrared spectroscopic data are also presented. Crystal data: NH4RbTe4O9·2H2O: Monoclinic I2/a (no. 15), a=18.917(3) Å, b=6.7002(11) Å, c=21.106(5) Å, β=101.813(2)°, V=2618.5(9) Å3, Z=8; NH4CsTe4O9·2H2O: Monoclinic I2/a (no. 15), a=18.9880(12) Å, b=6.7633(4) Å, c=21.476(2) Å, β=102.3460(10)°, V=2694.2(3) Å3, Z=8.  相似文献   

7.
Although R2O3:MoO3=1:6 (R=rare earth) compounds are known in the R2O3-MoO3 phase diagrams since a long time, no structural characterization has been achieved because a conventional solid-state reaction yields powder samples. We obtained single crystals of R2Mo6O21·H2O (R=Pr, Nd, Sm, and Eu) by thermal decomposition of [R2(H2O)12Mo8O27nH2O at around 685-715 °C for 2 h, and determined their crystal structures. The simulated XRD patterns of R2Mo6O21·H2O were consistent with those of previously reported R2O3:MoO3=1:6 compounds. All R2Mo6O21·H2O compounds crystallize isostructurally in tetragonal, P4/ncc (No. 130), a=8.9962(5), 8.9689(6), 8.9207(4), and 8.875(2) Å; c=26.521(2), 26.519(2), 26.304(2), and 26.15(1) Å; Z=4; R1=0.026, 0.024, 0.024, and 0.021, for R=Pr, Nd, Sm, and Eu, respectively. The crystal structure of R2Mo6O21·H2O consists of two [Mo2O7]2−-containing layers (A and B layers) and two interstitial R(1)3+ and R(2)3+ cations. Each [Mo2O7]2− group is composed of two corner-sharing [MoO4] tetrahedra. The [Mo2O7]2− in the B layer exhibits a disorder to form a pseudo-[Mo4O9] group, in which four Mo and four O sites are half occupied. R(1)3+ achieves 8-fold coordination by O2− to form a [R(1)O8] square antiprism, while R(2)3+ achieves 9-fold coordination by O2− and H2O to form a [R(2)(H2O)O8] monocapped square antiprism. The disorder of the [Mo2O7]2− group in the B layer induces a large displacement of the O atoms in another [Mo2O7]2− group (in the A layer) and in the [R(1)O8] and [R(2)(H2O)O8] polyhedra. A remarkable broadening of the photoluminescence spectrum of Eu2Mo6O21·H2O supported the large displacement of O ligands coordinating Eu(1) and Eu(2).  相似文献   

8.
Three new alkaline earth-zirconium oxalates M2Zr(C2O4)4·nH2O have been synthesized by precipitation methods for M=Ba, Sr, Ca. For each compound the crystal structure was determined from single crystals obtained by controlled diffusion of M2+ and Zr4+ ions through silica gel containing oxalic acid. Ba2Zr(C2O4)4·7H2O, monoclinic, space group C2/c, a=9.830(2), b=29.019(6), , , , Z=4, R=0.0427; Sr2Zr(C2O4)4·11H2O, tetragonal, space group I41/acd, a=16.139(4), , ,Z=8, R=0.0403; Ca2Zr(C2O4)4·5H2O, orthorhombic, space group Pna21, a=8.4181(5), b=15.8885(8), , , Z=4, R=0.0622. The structures of the three compounds consist of chains of edge-shared MO6(H2O)x (x=2 or 3) polyhedra connected to ZrO8 polyhedra through oxalate groups. Depending on the arrangement of chains, the ZrO8 polyhedron geometry (dodecahedron or square antiprism) and the connectivity, two types of three-dimensional frameworks are obtained. For the smallest M2+ cations (Sr2+, Ca2+), large tunnels are obtained, running down the c direction of the unit cell, which can accommodate zeolitic water molecules. For the largest Ba2+ cation, the second framework is formed and is closely related to that of Pb2Zr(C2O4)4·nH2O. The decomposition at 800°C into strontium carbonate, barium carbonate or calcium oxide and MZrO3 (M=Sr, Ba, Ca) perovskite is reported from thermal analyses studies and high temperature X-ray powder diffraction.  相似文献   

9.
Reduced titanates in the ATi2O4 (A=Li, Mg) spinel family exhibit a variety of interesting electronic and magnetic properties, most notably superconductivity in the mixed-valence spinel, Li1+xTi2−xO4. The sodium and calcium analogs, NaTi2O4 and CaTi2O4, each differ in structure, the main features of which are double rutile-type chains composed of edge-sharing TiO6 octahedra. We report for the first time, the properties and band structures of these two materials. XANES spectroscopy at the Ti K-edge was used to probe the titanium valence. The absorption edge position and the pre-edge spectral features observed in the XANES data confirm the assignment of Ti3+ in CaTi2O4 and mixed-valence Ti3+/Ti4+ in NaTi2O4. Temperature-dependent resistivity and magnetic susceptibility studies are consistent with the classification of both NaTi2O4 and CaTi2O4 as small band-gap semiconductors, although changes in the high-temperature magnetic susceptibility of CaTi2O4 suggest a possible insulator-metal transition near 700 K. Band structure calculations agree with the observed electronic properties of these materials and indicate that while Ti-Ti bonding is of minimal importance in NaTi2O4, the titanium atoms in CaTi2O4 are weakly dimerized at room temperature.  相似文献   

10.
VOx·nH2O (2.0?x?2.5) nanoribbons have been synthesized by direct hydrothermal processing of the aqueous solution of NH4VO3 and polyethylene glycol 400 (PEG-400) at pH 3.5-5.5. Techniques of XRD, SEM, TEM, HRTEM, ED, and XPS have been used to characterize the structure, morphology, and composition of the nanoribbons. The VOx·nH2O nanoribbons are up to ∼200 μm in length, 100-150 nm in width, 20-30 nm in thickness, and grow along the [010] direction. The ratios of V4+ to V5+ in the products can be readily controlled by carefully adjusting the periods of reaction time. PEG carries the roles of both transport and reducing agent. A coordination self-assembly mechanism was proposed to elucidate the formation of the VOx·nH2O nanoribbons.  相似文献   

11.
Thermogravimetry (TG) of A(H2O)6BX6 complexes are presented, with A  Cd2+, Co2+, Cu2+, Fe2+, Mg2+, Mn2+, Ni2+, Pb2+, Zn2+, BSi4+, Sn4+, Ti4+, Zr4+, and XCl?, F?. On a selected number of complexes, differential thermal analyses (DTA) and differential scanning calorimetric measurements (DSC) have been performed. It was found possible to synthesize most complexes including Cd(H2O)6TiF6 as single crystals. The hexafluoride and the titanate compounds are formed from the corresponding cadmium hexaquo—hexafluoride complex. The cadmium titanate could be made either in the ilmenite or in the perovskite structure. The decomposition programs for the preparation of NiTiO3 and CdTiO3 are presented.The hexaquo—hexahalide complexes, in general, show one of two decomposition types. The intermediate product in one type is the metal(II) fluoride AX2 and in the other the mixed hexahalide compounds ABX6. Which type of decomposition occurs depends on the anion BX2?6.  相似文献   

12.
13.
Six new isostructural A2(Mo4Sb2O18) (A=Y, La, Nd, Sm, Gd and Dy) compounds have been synthesized by solid-state reactions and characterized by single crystal X-ray diffraction and spectroscopic techniques. They crystallize in C2/c space group with 4 formula units and contain A3+ cations and discrete centrosymmetric anionic (Mo4Sb2O18)6− aggregates, made of tetrahedral MoO4 and disphenoidal SbO4 moieties. They exhibit characteristic Sb3+ photoluminescence.  相似文献   

14.
The reaction of lanthanide nitrate with 1,4-di (N,N-diisopropylacetamido)-2,3(1H,4H)-quinoxalinedione (L) yields six novel Ln(III) complexes ([Ln2L2(NO3)6(H2O)2]·H2O) which are characterized by elemental analysis, thermogravimetric analysis (TGA), conductivity measurements, IR, electronic and 1H NMR spectroscopies. A new quinoxalinedione-based ligand is used as antenna ligand to sensitize the emission of lanthanide cations. The lowest triplet state energy level of the ligand in the nitrate complex matches better to the resonance level of Eu(III) and Sm(III) than Tb(III) and Dy(III) ion. The f-f fluorescence is induced in the Eu3+ and Sm3+ complexes by exciting into the π-π* absorptions of the ligand in the UV. Furthermore, the crystal structures of a novel binuclear complex [Nd2L2(NO3)6(H2O)2]·H2O has been determined by single-crystal X-ray diffraction. The binuclear [Nd2L2(NO3)6(H2O)2]·H2O complex units are linked by the intermolecular hydrogen bonds and π-π interactions to form a two-dimensional (2-D) layer supramolecule.  相似文献   

15.
A new series of layered perovskite photocatalysts, ABi2Ta2O9 (A=Ca, Sr, Ba), were synthesized by the conventional solid-state reaction method and the crystal structures were characterized by powder X-ray diffraction. The results showed that the structure of ABi2Ta2O9 (A=Ca, Sr) is orthorhombic, while that of BaBi2Ta2O9 is tetragonal. First-principles calculations of the electronic band structures and density of states (DOS) revealed that the conduction bands of these photocatalysts are mainly attributable to the Ta 5d+Bi 6p+O 2p orbitals, while their valence bands are composed of hybridization with O 2p+Ta 5d+Bi 6s orbitals. Photocatalytic activities for water splitting were investigated under UV light irradiation and indicated that these photocatalysts are highly active even without co-catalysts. The formation rate of H2 evolution from an aqueous methanol solution is about 2.26 mmol h-1 for the photocatalyst SrBi2Ta2O9, which is much higher than that of CaBi2Ta2O9 and BaBi2Ta2O9. The photocatalytic properties are discussed in close connection with the crystal structure and the electronic structure in details.  相似文献   

16.
Four new [H3tren]3+ or [H4tren]4+ fluoride zirconates and two new [H3tren]3+ fluoride tantalates are evidenced in the (ZrF4 or Ta2O5)-tren-HFaq.-ethanol systems at 190 °C: the structurally related phases [H4tren]·(Zr2F12)·H2O and α-[H4tren]·(Zr2F12) (P212121), β-[H4tren]·(Zr2F12) (P21/c), [H3tren]4·(ZrF8)3·4H2O (I23), β-[H3tren]2·(Ta3O2F16)·(F) (R32) and its monoclinic distortion α-[H3tren]2·(Ta3O2F16)·(F) (C2/m). α and β-[H4tren]·(Zr2F12) and [H4tren]·(Zr2F12)·H2O are built up from (Zr2F12) dimers of edge sharing ZrF7 polyhedra while isolated ZrF8 dodecahedra are found in [H3tren]4·(ZrF8)3·4H2O. Linear (Ta3O2F16) trimers build α and β-[H3tren]2·(Ta3O2F16)·(F); they consist of two (TaOF6) pentagonal bipyramids that are linked to two opposite oxygen atoms of one central (TaO2F4) octahedron. A disorder affects the equatorial fluorine atoms of the trimers and eventually carbon or nitrogen atoms of [H3tren]3+ cations.  相似文献   

17.
The single crystal structure of a series of nine isotypic Mo(V) diphosphates was determined from crystals with composition A2+(MoO)10(P2O7)8 (A=Ba, Sr, Ca, Cd, Pb) and A+(MoO)5(P2O7)4 (A=Ag, Li, Na, K). The structure of those phosphates, built up of corner sharing MoO6 octahedra, MoO5 tetragonal pyramids and P2O7 diphosphates groups, forms eight-sided tunnels as described by Lii et al. for A=Ag. New features are evidenced: (1) existence of two orientations, up and down along b for the MoO5 pyramids; (2) maximum insertion rate of the divalent cations which is twice less than that of the univalent cations; (3) different behavior of the series “Pb, Sr, Ba, Li, Na, K” which exhibits only one kind of site for the inserted cation, compared to the “Cd, Ca, Ag” series for which two kinds of sites are observed; (4) off-centering of the A-site cations with respect to the tunnel axis; and (5) unusually high thermal factors along the tunnel axis, but absence of ionic conductivity.  相似文献   

18.
Layered compounds have been synthesized and structurally characterized for the n=5 and 6 members of the perovskite-related family La4Srn−4TinO3n+2 by combining X-ray diffraction and transmission electron microscopy. Their structure can be regarded as comprising [(La,Sr)5Ti5O17] and [(La,Sr)6Ti6O20] perovskite blocks joined by crystallographic shears along the a-axis, with consecutive blocks shifted by 1/2 [100]p. The n=5 member is similar to the previously reported n=5 member of other AnBnO3n+2-related series. The n=6 member, which has only been briefly reported in other systems previously, is also a well-behaved member of this AnBnO3n+2 series.  相似文献   

19.
Single crystals of [H3dien]·(FeF6)·H2O (I) and [H3dien]·(CrF6)·H2O (II) are obtained by solvothermal synthesis under microwave heating. I is orthorhombic (Pna21) with a=11.530(2) Å, b=6.6446(8) Å, c=13.787(3) Å, V=1056.3(2) Å3 and Z=4. II is monoclinic (P21/c) with a=13.706(1) Å, b=6.7606(6) Å, c=11.3181(9) Å, β=99.38(1)°, V=1034.7(1) Å3 and Z=4. The structure determinations, performed from single crystal X-ray diffraction data, lead to the R1/wR2 reliability factors 0.028/0.066 for I and 0.035/0.102 for II. The structures of I and II are built up from isolated FeF6 or CrF6 octahedra, water molecules and triprotonated amines. In both structures, each octahedron is connected by hydrogen bonds to six organic cations and two water molecules. The iron-based compound is also characterized by 57Fe Mössbauer spectrometry: the hyperfine structure confirms the presence of Fe3+ in octahedral coordination and reveals the existence of paramagnetic spin fluctuations.  相似文献   

20.
Li2PtH6, the missing member of the complex transition metal hydride series A2PtH6 (A=alkali metal), was prepared by reacting mixtures of LiH and Pt in the presence of BH3NH3 as hydrogen source at pressures above 8 GPa. According to powder X-ray diffraction analysis, Li2PtH6 is isostructural to its heavier homologues and crystallizes in the cubic K2PtCl6 structure (space group Fmm, a=6.7681(3), Z=4). However, PtH62− octahedral complexes in Li2PtH6 approach each other closely and its structure may likewise be regarded as a defective perovskite structure where half of the octahedrally coordinated atoms (cations) are missing. The IR spectrum of Li2PtH6 reveals the Pt-H T1u stretch and bend at 1840 and 889 cm−1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号