首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A bifunctional heterogeneous catalyst containing two mutually incompatible acidic and basic sites,which exhibits cooperative catalytic behavior in the aldol condensation of acetone and various aldehydes,was synthesized by postgrafting of 1,5,7- triazabicyclo[4.4.0]dec-5-ene(TBD,a sterically hindered organic base) onto Al-MCM-41 molecular sieve.  相似文献   

2.
Amorphous aluminophosphate (AlP) and metal‐aluminophosphates (MAlPs, where M=2.5 mol%Cu, Zn, Cr, Fe, Ce, or Zr) were prepared by coprecipitation method. Their surface properties and catalytic activity ...  相似文献   

3.
Amorphous aluminophosphate (AlP) and metal‐aluminophosphates (MAlPs, where M=2.5 mol%Cu, Zn, Cr, Fe, Ce, or Zr) were prepared by coprecipitation method. Their surface properties and catalytic activity for the synthesis of jasminaldehyde through the aldol condensation of n‐heptanal and benzaldehyde were investigated. The nitrogen adsorption‐desorption isotherms showed that the microporosity exhibited by the aluminophosphate was changed to a mesoporous and macroporous structure which depended on the metal incorporated, with a concomitant change in the surface area. Temperature‐programmed desorption of NH3 and CO2 revealed that the materials possessed both acidic and basic sites. The acidic strength of the material was either increased or decreased depending on the nature of the metal. The basicity was increased compared to AlP. All the materials were X‐ray amorphous and powder X‐ray diffraction studies indicated the absence of metal oxide phases. The Fourier transform infrared analysis confirmed the presence of phosphate groups and also the absence of any M‐O moieties in the materials. The selected organic reaction occurred only in the presence of the AlP and MAlPs. The selectivity for the jasminaldehyde product was up to 75%with a yield of 65%. The best conversion of n‐heptanal with a high selectivity to jasminaldehyde was obtained with FeAlP as the catalyst, and this material was characterized to have less weak acid sites and more basic sites.  相似文献   

4.
New amino-functionalized monodispersed mesoporous silica spheres (MMSS) were synthesized directly by co-condensation of 3-aminopropyltrimethoxysilane (AP-TMS), [3-(2-aminoethylamino)propyl]trimethoxysilane (AEAP-TMS) or 3-[2-(2-aminoethylamino)ethylamino]propyltrimethoxysilane (AEAEAP-TMS) with tetramethoxysilane. By changing the methanol ratio or adding extra silica source, amino-functionalized MMSS with different particle diameter (310–780 nm) and the same mesopore size were successfully synthesized. TEM observations revealed that the mesopores were aligned radially from the center towards the outside of the spheres even in the amino-functionalized MMSS. The effect of particle diameter on base catalytic activity was investigated using the amino-functionalized MMSS. In addition, the amino-functionalized MMSS were found to be excellent base catalysts in the nitroaldol condensation reactions. The effectiveness factor was evaluated to be 0.8–0.82 and improved substantially compared with MMSS prepared by grafting method.  相似文献   

5.
The aldol reaction between acetone and 4-nitrobenzaldehyde catalyzed by single l-prolinamide and its zinc complexes has been studied. An increase in the rate and the stereoselectivity of the reaction has been shown by using zinc derivatives. A mechanistic proposal, based on NMR and ESI studies, has been put forward to explain the experimental data: zinc-prolinamide complexes catalyze the reaction following the general mechanism of stereoselective enamine nucleophilic addition to the acceptor aldehyde. Zn2+ prevents the nonspecific base-catalyzed reaction by diminishing the basicity of the amine nitrogen of prolinamide.  相似文献   

6.
4-Hydroxy-prolinamide alcohol with different noncoordination sites as a molecule showed excellent asymmetric catalytic activity in both the Michael reaction (up to 98% ee) and the direct aldol reaction (up to >99% ee), and the catalyzing reactions with high enantioselectivity are supported by a DFT theoretical study of their transition state.  相似文献   

7.
A general stereocontrolled approach for entry into a family of highly biologically active 2,5-diaryl-3,4-disubstituted furano lignans has been developed. The key step involves a diastereoselective aldol-type condensation of an ester enolate having an α-chiral center with an aromatic aldehyde. The methodology has been illustrated with the total syntheses of (−)-talaumidin and (−)-virgatusin.  相似文献   

8.
The enantioselective aldol reaction between ketones and aldehydes constitutes one the most common reaction models for the evaluation of novel organocatalysts. The last few years, it has been shown that the organocatalytic aldol reaction can be performed in water. A family of tripeptides consisting of proline, phenylalanine, and tert-butyl esters of amino acids was successfully employed in this asymmetric transformation. The products of the reaction between various ketones and aldehydes were obtained in high yields (up to 99%) with excellent diastereo- (up to 97:3 dr) and enantioselectivities (up to 99% ee). The C-terminal amino acid determines the ability of the tripeptide (Pro-Phe-AA-OtBu) to act efficiently in aqueous or organic medium.  相似文献   

9.
An efficient and ecofriendly aldol reaction of kojic acid with aldehydes using a heterogeneous reusable catalyst (alumina modified with base) is developed. Enzymatic hydrolytic resolution of the racemic acetylated aldol adduct 2 was achieved using lipase from Candida antarctica type B (CALB). The key feature of this enzymatic resolution is that regioselective deacetylation of ester derived from the primary alcohol located away from the stereocentre occurred in the presence of adjacent secondary acetate.  相似文献   

10.
An approach based on combinations of various water compatible Lewis acids and l-proline co-catalysts has been evaluated for the direct asymmetric aldol reaction. From this broad screening, chloride salts from group 12 elements (ZnCl2, CdCl2, HgCl2) lead to the highest stereoselectivities. Optimized catalytic conditions (catalytic system: l-proline: 20%/ZnCl2: 10%; solvent mixture: DMSO/H2O, 8:2) gave anti aldol products with improved enantioselectivity (>99% ee) compared to a moderately stereoselective procedure based on proline activation only.  相似文献   

11.
Kai Yu 《Tetrahedron》2009,65(1):305-55
Two chiral Mn(III) salen complexes were immobilized onto a series of mesoporous MCM-41 and MCM-48 materials with different pore sizes and the as-synthesized catalysts were active and enantioselective for the asymmetric epoxidation of styrene and indene. The results of XRD, FTIR, DR UV-vis, and N2 sorption showed that the chiral Mn(III) salen complexes were anchored in the channels of mesoporous materials. The influence of organic silicane dosage on the catalytic performance was studied and the optimum dosage of organic silicane for preparing heterogeneous catalysts was determined. Furthermore, the effect of the fine-tuning of pore size on the performance of heterogeneous catalysts was discussed. In general, larger pore size of the supports could lead to higher conversions and the compatible pore size with substrate may be responsible for the improved enantiomeric excess (ee) values.  相似文献   

12.
The helical twisting powers of the E-isomers of aldol condensation products of menthone and aromatic aldehydes are higher than those of the Z-isomers. In order to find out which chiral centre of these menthone derivatives is responsible for the value of the helical twisting in both isomers, the E-isomers of aldol condensation products of 3-methylcyclohexanone and 2-isopropylcyclohexanone were prepared and photoisomerized to form Z-isomers. The physical properties of these species were determined. It was concluded that the strong helical twisting power of the E-isomers of the derivatives of menthone is caused by the chiral carbon atom containing the methyl group in the ring. The relatively low helical twisting power of the Z-isomers and the composition of the E-Z isomers in the photostationary state are determined mainly by the other chiral centre containing the isopropyl group.  相似文献   

13.
The current study involves the novel synthesis of Ag nanoparticles (Ag NPs) decorated biguanidine modified mesoporous silica KIT-5 following post-functionalization approach (KIT-5-bigua-Ag). The tiny Ag NPs were being stabilized over the in situ prepared biguanidine ligand. The high surface area material was characterized using advanced analytical methods like Fourier Transformed infrared (FT-IR) spectroscopy, N2-adsorption–desorption isotherm, Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), Energy Dispersive X-ray Spectroscopy (EDS), and X-ray Diffraction study (XRD). The material was having large pore cage like structure with pore diameter of 8–10 nm. TEM study displayed the particles size of deposited Ag NPs were 10–15 nm. The KIT-5-bigua-Ag nanocomposite had a significantly high surface area of 318 m2/g (BET analysis). Towards the chemical applications of the material, we headed the three-component reaction of aldehydes, amines and alkynes (A3 coupling) with good to excellent yields (70–98%) of diverse Propargylamines. The catalyst was easily isolable and reused in 8 cycles without any leaching and considerable change in its reactivity. In addition, the KIT-5-bigua-Ag nanocomposite was engaged in biological assays like study of anti-oxidant properties by DPPH mediated free radical scavenging test using BHT as a reference molecule. Thereafter, on having a significant IC50 value in radical scavenging assay, we extended the bio-application of the desired nanocomposite in anticancer study of A549 cell of human lung in-vitro conditions. In the cytotoxicity and anti-human lung studies, the nanocomposite was treated to lung cancer A549 cell line following MTT assay. The cell viability of malignant lung cell line reduced dose-dependently in the presence of KIT-5-biguanidine-Ag nanocomposite. IC50 values of the nanocomposite were observed to be 915.22 μg/mL against A549 cell line. So, these results suggest that KIT-5-bigua-Ag as a novel chemotherapeutic nanocomposite have a suitable anticancer activity against lung cell lines.  相似文献   

14.
η5-Cp(COOMe)MoCl(CO)3 is grafted on the surface of mesoporous MCM-41 and MCM-48 materials through available silanol groups. The structural intactness of the supporting materials is confirmed by powder XRD and N2 adsorption analysis. The presence of the Mo complex on the surface is confirmed by FT-IR and elemental analysis. The catalysts are successfully applied for cyclooctene epoxidation.  相似文献   

15.
Bimodal mesoporous TiO2 microspheres with high photocatalytic activity were prepared by a hydrothermal method using titanium sulfate as precursor in the presence of urea. The results indicate that all prepared samples show bimodal pore-size distributions in the mesoporous region: smaller intra-aggregated pores with peak pore diameter of ca. 2 nm and larger inter-aggregated pores with peak pore diameter of ca. 12.5 nm. The molar ratio of urea to Ti(SO4)2 (Ru) has an obvious influence on the morphology, microstructure and photocatalytic activity of TiO2. With increasing Ru, specific surface areas and porosity increase, contrarily, the crystallite size and relative anatase crystallinity decrease. The photocatalytic activity first increases with Ru. At Ru = 2.0, the photocatalytic activity reaches the highest and is obviously higher than that of Degussa P25. With further increasing Ru, the photocatalytic activity decreases. The formation rate of hydroxyl radicals during photocatalysis has a positive correlation with the photocatalytic activity.  相似文献   

16.
Biochar (BC) and ferrihydrite (Fh) were used together in activation of H2O2 for removal of sulfamethazine (SMZ), a refractory antibiotic pollutant. The results show a complementary effect between biochar and ferrihydrite on activation of H2O2, namely biochar accelerated Fe(Ⅲ)/Fe(Ⅱ) cycle through electron donation/transfer, while ferrihydrite enhanced the yield of OH through a sustainable release of dissolved Fe. Thus several times more OH was produced in the co-activated system (BC + Fh/H2O2) than either in the ferrihydrite-catalyzed Fenton-like system (Fh/H2O2) or in the biochar-activated system (BC/H2O2). Consequently, a more efficient oxidation of SMZ was observed in BC + Fh/H2O2, in which the reaction rate constant (kobs) is 30.7 times in Fh/H2O2 and 6.08 times in BC/H2O2, respectively. This research provides a simple and sustainable strategy for enhancing the efficiency of Fenton-like oxidation of pollutants.  相似文献   

17.
Sulfhydryl MCM-41 (SH-MCM-41) mesoporous materials were prepared via a hydrothermal method, and -SH was successfully imported by a post-grafting method. The structure and surface properties of the materials were characterized using Fourier Transform infrared spectroscopy, X-ray diffraction and Transmission Electron Microscopy analysis. The low concentrations of La3+, Gd3+ and Yb3+ adsorption on the material were investigated. This paper discusses the effects of system factors, such as pH and the solid-liquid ratio, on the performance of the adsorption process. The adsorption thermodynamics and kinetics were also explored. Experimental results indicated that the materials were in good order and had high specific surface area (956 m2/g) with an average pore diameter of 2.1 nm; the mercapto groups were successfully grafted onto a molecular sieve, and the best grafted amount was 1.46 × 10?3 mol/g. The materials showed preferable adsorption of La3+, Gd3+ and Yb3+ with maximum adsorption capacities of 560.56 mg/g, 467.60 mg/g and 540.68 mg/g, respectively. The adsorption process can be described by the Freundlich isotherm model, and the adsorption data fits pseudo-second-order kinetics. After repeating the elution-regeneration cycle four times, the adsorption capacity of rare earth ions was mostly maintained, indicating that the adsorbent can be regenerated well and recycled to save costs. It has potential in practical application.  相似文献   

18.
Mesoporous oxides TiO2 and ZrO2, synthesized by surfactant templating via a neutral C13(EO)6–Zr(OC3H7)4 assembly pathway, and ceria‐modified TiO2 and ZrO2, prepared by a deposi‐tion–precipitation (DP) method, featuring high surface areas and uniform pore size distributions were used as supports for gold catalysts. The supported gold catalysts were assessed for the cata‐lytic abatement of air pollutants, i.e., CO, CH3OH, and (CH3)2O. The gold was supported on the mes‐oporous oxides by a DP method. The supports and catalysts were characterized by powder X‐ray diffraction, high‐resolution transmission electron microscopy, N2 adsorption–desorption analysis, and temperature‐programmed reduction technique. A high degree of synergistic interaction be‐tween ceria and mesoporous ZrO2 and TiO2 as well as a positive modification of the structural and catalytic properties by ceria was observed. The ceria additive interacts with the mesoporous oxides and induces a strong effect on the reducibility of the supports. The catalytic behavior of the catalysts was discussed to determine the role of the ceria modifying additive and possible interaction be‐tween the gold nanoparticles and ceria‐mesoporous oxide supports. The gold catalysts supported on ceria‐modified mesoporous ZrO2 displayed superior catalytic activity (~100%conversion of CO at 10 °C and CH3OH at 60 °C). The high catalytic activity can be attributed to the ability of the sup‐port to assist oxygen vacancies formation. The studies indicate that the ceria‐modified mesoporous oxide supports have potential as supports for gold‐based catalysts.  相似文献   

19.
An adsorbent material made with a silica lamellar mesoporous material treated with chitosan has been proved to be useful to adsorb both anionic and cationic dyes used in the textile industry. The two tested dyes Tectilon Blue (anionic) and Rhodamine B (cationic) have different adsorption kinetics reflecting a complex mechanism of the phenomenon. Furthermore, the adsorption capacity and interaction strength of Tectilon Blue is higher than those of Rhodamine B. Tectilon Blue molecules are situated with the molecular plane perpendicular to the adsorbent surface, whilst that of the Rhodamine B molecule is flat and parallel to the surface. The differences may be attributed to the different regions of the adsorbent surface on which the dyes are adsorbed because of their different electric charge.  相似文献   

20.
李成斌  李贺  李纯志  任小敏  杨启华 《催化学报》2021,42(10):1821-1830
共价有机聚合物(COPs)是一类由轻质元素(C,H,O,N和B等)通过共价键的方式连接而成的有机多孔材料.COPs的共轭结构赋予其优异的可见光吸收特性,已经在光催化水分解制氢、二氧化碳还原、有机合成和污染物降解等领域显示出巨大的应用潜力.虽然COPs具有能带结构易调控和高孔隙率等优点,但其光催化活性仍有待提升.使用助催化剂是提升COPs的光催化活性,促进表面反应普遍采用的策略.此外,底物活化官能团的引入和光催化剂表面性质的调控也是提高光催化剂反应活性的有效方法.虽然可以通过改变COPs单体种类、化学键的类型和拓扑结构来调控COPs的组成,但要同时兼顾COPs的结构和亲疏水性的调控以及底物活化官能团的引入仍十分困难.与纯COPs相比,与其他材料进行杂化为扩大COPs的化学组成和功能性提供了更多可能.迄今为止,在COPs纳米孔中封装分子、纳米颗粒或将COPs涂覆在其他固体材料上是制备基于COPs复合材料的常用策略.但是,考虑到COPs和无机材料合成条件的不相容性,在纳米尺度精确控制复合材料的组分、结构和形貌仍然是一项艰巨的任务.本文制备了稳定在十六烷基三甲基溴化铵(CTAB)疏水核中的COPs胶体,其粒度分布在16 nm左右.通过溶胶-凝胶法在CTAB周围水解聚合四乙氧基硅烷,得到SiO2/COPs复合材料.表征结果表明,COPs均匀分布在氧化硅的骨架中.该复合材料具有分别来自于SiO2和COPs的介孔和微孔结构.与纯COPs相比,复合材料的表面疏水性降低.SiO2/COPs具有可见光响应特性,其吸收带边随COPs含量的增加而红移,表明在复合材料中COPs在高含量时发生团聚.SiO2/COPs作为光催化剂,可高效催化α-溴代苯乙酮的还原脱卤反应(汉斯酯为还原剂),其催化活性和SiO2/COPs比例相关,在COPs含量为22.6 wt%时达到最优.SiO2/COPs的催化活性较COPs有大幅度提高.在优化的SiO2/COPs比例下,SiO2/COPs的TOF是COPs的近12倍.控制实验表明,SiO2中的羟基对汉斯酯为还原剂有活化作用.此外,本文研究发现,复合材料的活性与SiO2/COPs的比值呈火山型曲线,表明在光催化反应中SiO2和COPs之间存在协同效应.由此可见,将光催化剂和反应物活化材料耦合是提高光催化反应活性的有效策略.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号