首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polydimethylsiloxane (PDMS) is the most commonly used membrane material for the separation of condensable vapors from lighter gases. In this study, a composite PDMS membrane was prepared and its gas permeation properties were investigated at various upstream pressures. A microporous cellulose acetate (CA) support was initially prepared and characterized. Then, PDMS solution, containing crosslinker and catalyst, was cast over the support. Sorption and permeation of C3H8, CO2, CH4, and H2 in the prepared composite membrane were measured. Using sorption and permeation data of gases, diffusion coefficients were calculated based on solution‐diffusion mechanism. Similar to other rubbery membranes, the prepared PDMS membrane advantageously exhibited less resistance to permeation of heavier gases, such as C3H8, compared to the lighter ones, such as CO2, CH4, and H2. This result was attributed to the very high solubility of larger gas molecules in the hydrocarbon‐based PDMS membrane in spite of their lower diffusion coefficients relative to smaller molecules. Increasing feed pressure increased permeability, solubility, and diffusion coefficients of the heavier gases while decreased those of the lighter ones. At constant temperature (25°C), empirical linear relations were proposed for permeability, solubility, and diffusion coefficients as a function of transmembrane pressure. C3H8/gas solubility, diffusivity, and overall selectivities were found to increase with increasing feed pressure. Ideal selectivity values of 9, 30, and 82 for C3H8 over CO2, CH4, and H2, respectively, at an upstream pressure of 8 atm, confirmed the outstanding separation performance of the prepared membrane. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
Pure gas solubility and permeability of H2, O2, N2, CO2, CH4, C2H6, C3H8, CF4, C2F6, and C3F8 in poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) were determined as a function of pressure at 35°C. Permeability coefficients of the perfluorinated penetrants are approximately an order of magnitude lower than those of their hydrocarbon analogs, and lower even than those of the permanent gases. In striking contrast to hydrocarbon penetrants, PTMSP permeability to fluorocarbon penetrants decreases with increasing penetrant size. This unusual size‐sieving behavior in PTMSP is attributed to low perfluorocarbon solubilities in PTMSP coupled with low diffusion coefficients relative to those of their hydrocarbon analogs. In general, perfluorocarbon penetrants are less soluble than their hydrocarbon analogs in PTMSP. The difference in hydrocarbon and perfluorocarbon solubilities in high free volume, hydrocarbon‐rich PTMSP is much smaller than in hydrocarbon liquids and liquidlike polydimethylsiloxane. The low solubility of perfluorocarbon penetrants is ascribed to the large size of the fluorocarbons, which inhibits their dissolution into the densified regions of the polymer matrix and reduces the number of penetrant molecules that can be accommodated in Langmuir sites. From the permeability and sorption data, diffusion coefficients were calculated as a function of penetrant concentration. With the exception of H2 and the C3 analogs, all of the penetrants exhibit a maximum in their concentration‐dependent diffusion coefficients. Resolution of diffusion coefficients into a mobility factor and a thermodynamic factor reveals that it is the interplay between these two terms that causes the maxima. The mobility of the smaller penetrants (H2, O2, N2, CH4, and CO2) decreases monotonically with increasing penetrant concentration, suggesting that the net free volume of the polymer–penetrant mixture decreases as additional penetrant is added to PTMSP. For larger penetrants mobility either: (1) remains constant at low concentrations and then decreases at higher penetrant concentrations (C2H6, CF4, and C2F6); (2) remains constant for all concentrations examined (C3H8); or (3) increases monotonically with increasing penetrant concentration (C3F8). Presumably these results reflect the varying effects of these penetrants on the net free volume of the polymer–penetrant system. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 273–296, 2000  相似文献   

3.
The transport properties of silicone rubber are reported at 35°C for a series of pure gases (He, N2, CH4, CO2, and C2H4) and gas mixtures (CO2/CH4 and N2/CO2) for pressures up to 60 atm. The effects of pressure and concentration on the permeability of various gases have been analyzed to consider plasticization and hydrostatic compression effects. Over an extended pressure and concentration range, both compression of free volume and eventual plasticization phenomena were observed for the various penetrants. In pure component studies, plasticization effects tended to dominate hydrostatic compression effects for the more condensible penetrants (C2H4 and CO2) while the reverse was true for the low sorbing N2 and He. These issues are discussed in terms of penetrant diffusion coefficients versus pressure to clarify the interplay between the opposing effects for the penetrants of markedly different solubilities. Additional insight into the somewhat complex interplay of the plasticization and hydrostatic compression effects are given by mixed gas permeation results. It was found that the permeability of nitrogen in a 10/90 CO2/N2 and a 50/50 CO2/N2 mixture was increased by the presence of CO2 because the plasticizing nature of CO2 is able to overcome nitrogen's compression effect.  相似文献   

4.
Permeability and diffusion coefficients of O2, He, CO2 and C4H6 were measured in water,swollen poly(vinylalcohol-co-itaconic acid) membranes having various water contents from 0.48 to 0.83. The permeability coefficients of CO2 and C4H6 were found to depend on the upstream pressure, while the permeability coefficients of O2 and He were independent of the pressure. With decreasing pressure the permeability coefficients of CO2 and C4H6 increased, and the pressure dependence became larger with decreasing water content of the membranes. A parallel permeation model based on the two states of water in the water-swollen membranes could be applied successfully to CO2 and C4H6.  相似文献   

5.
Permeability coefficients for Ar, SF6, CF4, and C2H2F2 (1,1-difluoroethylene) in polyethylene membranes were determined from steady-state permeation rates at temperatures from 5 to 50°C, and at applied gas pressures of up to 15 atm. The temperature and pressure dependence of the permeability coefficients was represented satisfactorily by an extension of Fujita's free volume model of diffusion of small molecules in polymers. The parameters required by this model were determined from independent absorption (diffusivity) measurements with the above gases in polyethylene rods. The present work confirms the results of previous studies with CO2, CH4 C2H4 and C3H8 in polyethylene.  相似文献   

6.
Diffusion and solubility coefficients have been determined for the CO2?, CH4?, C2H4?, and C3H8-polyethylene systems at temperatures of 5, 20, and 35°C and at gas pressures up to 40 atm. Diffusion coefficients were obtained from rates of gas absorption in polyethylene rods under isothermal-isobaric conditions by means of a new diffusivity apparatus. The concentration dependence of the diffusion coefficients was represented satisfactorily by Fujita's free-volume model, modified for semicrystalline polymers, while the solubility of all the penetrants in polyethylene was within the limit of Henry's law. Semiempirical correlations were found for the free-volume parameters in terms of physicochemical properties of the penetrant gases and the penetrant-polymer systems. These correlations, if confirmed, should permit the prediction of diffusion and permeability coefficients of other gases and of gas mixtures in polyethylene as functions of pressure and temperature.  相似文献   

7.
Solubility measurements of several nonpolar gases (He, Ne, Ar, Kr, Xe, H2, N2, CH4, C2H4, C2H6, CF4, SF6, and CO2) in 2,2,2-trifluoroethanol at 25°C and 101.33 kPa partial pressure of gas are reported. Gibbs energy for the solution process at 25°C is evaluated from the experimental values of the solubility of gases expressed as mole fraction. Lennard-Jones 6–12 pair potential parameters for 2,2,2-trifluoroethanol are estimated by using the scaled particle theory (SPT); and experimental solubilities are compared with those calculated from the values of these parameters through the SPT model.  相似文献   

8.
The solubility and diffusion coefficient of carbon dioxide in intermediate‐moisture starch–water mixtures were determined both experimentally and theoretically at elevated pressures up to 16 MPa at 50 °C. A high‐pressure decay sorption system was assembled to measure the equilibrium CO2 mass uptake by the starch–water system. The experimentally measured solubilities accounted for the estimated swollen volume by Sanchez–Lacombe equation of state (S‐L EOS) were found to increase almost linearly with pressure, yielding 4.0 g CO2/g starch–water system at 16 MPa. Moreover, CO2 solubilities above 5 MPa displayed a solubility increase, which was not contributed by the water fraction in the starch–water mixture. The solubilities, however, showed no dependence on the degree of gelatinization (DG) of starch. The diffusion coefficient of CO2 was found to increase with concentration of dissolved CO2, which is pressure‐dependent, and decrease with increasing DG in the range of 50–100%. A free‐volume‐based diffusion model proposed by Areerat was employed to predict the CO2 diffusivity in terms of pressure, temperature, and the concentration of dissolved CO2. S‐L EOS was once more used to determine the specific free volume of the mixture system. The predicted diffusion coefficients showed to correlate well with the measured values for all starch–water mixtures. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 607–621, 2006  相似文献   

9.
Gas sorption properties, permeability coefficients, and diffusion coefficients of a series of norbornene polymers are presented. Introduction of the Si(CH3)3 group into the polynorbornene (PNB) backbone chain results in significant increases in glass transition temperature, permeability, and diffusion coefficient for a number of gases (H2, O2, N2, CO2, CH4, C2H6). The transport properties and sorption isotherms for poly(5-trimethylsilyl norbornene) (PTMSNB) are very similar to those for poly(vinyltrimethyl silane) (PVTMS), which contains the same side-chain group but differs from PTMSNB by the structure of its main chain. For another silicon-containing polymer poly[5-(1,1,3,3-tetramethyl-1,3-disilabutyl) norbornene] (PDSNB) having a bulkier side-chain group, the glass-transition temperature is decreased in comparison with that of PNB, presumably owing to self-plasticization. Both silicon-containing norbornene polymers (PTMSNB and PDSNB) have permeability coefficients for “rapid” gases like H2 or CO2 of about 102 Barrer. The high values of the Langmuir sorption capacity C′H for PTMSNB and PVTMS, as well as the high diffusivity and mobility of spin probes in these polymers, were attributed to a large free volume related to the bulky Si(CH3)3 groups attached directly to the main chain. © 1993 John Wiley & Sons, Inc.  相似文献   

10.
A gravimetric method for determining precisely the solubility of gases in polymers at high pressure is described. The solubilities of N2 and CO2 in low-density polyethylene (LDPE); CO2 in polycarbonate (PC); and N2, CH4, C2H6, and CO2 in polysulfone (PSUL) have been measured as a function of pressure up to 50 atm. Most of the measured sorption isotherms agreed closely with published data, but reproducible and time-dependent hysteresis in the sorption of CO2, C2H6, and CH4 in glassy polymers, PC, and PSUL, was observed in this study for the first time. Like the well known conditioning effect of high-pressure CO2 on the sorption capacity of glassy polymers, these hysteresis phenomena are believed to be due to the plasticizing effect of sorbed gases. On the basis of the current data, the dual-mode sorption model including the plasticization by sorbed gas is discussed and a primitive equation for the concentration of sorbed gases in a quasiequilibrium state of sorption or desorption is proposed.  相似文献   

11.
The permeability of poly(dimethylsiloxane) [PDMS] to H2, O2, N2, CO2, CH4, C2H6, C3H8, CF4, C2F6, and C3F8, and solubility of these penetrants were determined as a function of pressure at 35 °C. Permeability coefficients of perfluorinated penetrants (CF4, C2F6, and C3F8) are approximately an order of magnitude lower than those of their hydrocarbon analogs (CH4, C2H6, and C3H8), and the perfluorocarbon permeabilities are significantly lower than even permanent gas permeability coefficients. This result is ascribed to very low perfluorocarbon solubilities in hydrocarbon‐based PDMS coupled with low diffusion coefficients relative to those of their hydrocarbon analogs. The perfluorocarbons are sparingly soluble in PDMS and exhibit linear sorption isotherms. The Flory–Huggins interaction parameters for perfluorocarbon penetrants are substantially greater than those of their hydrocarbon analogs, indicating less favorable energetics of mixing perfluorocarbons with PDMS. Based on the sorption results and conventional lattice solution theory with a coordination number of 10, the formation of a single C3F8/PDMS segment pair requires 460 J/mol more energy than the formation of a C3H8/PDMS pair. A breakdown in the geometric mean approximation of the interaction energy between fluorocarbons and hydrocarbons was observed. These results are consistent with the solubility behavior of hydrocarbon–fluorocarbon liquid mixtures and hydrocarbon and fluorocarbon gas solubility in hydrocarbon liquids. From the permeability and sorption data, diffusion coefficients were determined as a function of penetrant concentration. Perfluorocarbon diffusion coefficients are lower than those of their hydrocarbon analogs, consistent with the larger size of the fluorocarbons. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 415–434, 2000  相似文献   

12.
Permeability and solubility coefficients for H2, CO2, O2, CO, N2, and CH4 in polyimides prepared from 6FDA and methyl-substituted phenylenediamines were measured to investigate effects of the substituents on gas permeability and permselectivity. The methyl substituents restrict internal rotation around the bonds between the phenyl rings and the imide rings. The rigidity and nonplanar structure of the polymer chain, and the bulkiness of methyl groups make chain packing inefficient, resulting in increases in both diffusion and solubility coefficients of the gases. Polyimides from tetramethyl-p-phenylenediamine and trimethyl-m-phenylenediamine display very high permeability coefficients and very low permselectivity due to very high diffusion coefficients and very low diffusivity selectivity, as compared with the other polyimides having a similar fraction of free space. This suggests that these polyimides have high fractions of large-size free spaces.  相似文献   

13.
The solubilities of He, H2, N2, O2, CO2, CH4, C2H6, C3H8, and n‐C4H10 were determined at 35°C and pressures up to 27 atmospheres in a systematic series of phase separated polyether–polyamide segmented block copolymers containing either poly(ethylene oxide) [PEO] or poly(tetramethylene oxide) [PTMEO] as the rubbery polyether phase and nylon 6 [PA6] or nylon 12 [PA12] as the hard polyamide phase. Sorption isotherms are linear for the least soluble gases (He, H2, N2, O2, and CH4), convex to the pressure axis for more soluble penetrants (CO2, C3H8, and n‐C4H10) and slightly concave to the pressure axis for ethane. These polymers exhibit high CO2/N2 and CO2/H2 solubility selectivity. This property appears to derive mainly from high carbon dioxide solubility, which is ascribed to the strong affinity of the polar ether linkages for CO2. As the amount of the polyether phase in the copolymers increases, gas solubility increases. The solubility of all gases is higher in polymers with less polar constituents, PTMEO and PA12, than in polymers with more polar PEO and PA6 units. CO2/N2 and CO2/H2 solubility selectivity, however, are higher in polymers with higher concentrations of polar repeat units. The sorption data are complemented with physical characterization (differential scanning calorimetry, elemental analysis, and wide angle X‐ray diffraction) of the various block copolymers. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2463–2475, 1999  相似文献   

14.
Permeability coefficients have been measured for CO2, CH4, C2H4, and C3H8 in polyethylene membranes at temperatures of 5, 20, and 35°C and at applied gas pressures of up to 30 atm. The temperature and pressure dependence of the permeability coefficients was represented satisfactorily by an extension of Fujita's free-volume model of diffusion of small molecules in polymers. The results of the present steady-state permeability measurements provide further support for the conclusion reached from previous unsteady-state diffusivity measurements that Fujita's model is applicable to the transport of small molecules, such as CO2, CH4, C2H4, and C3H8, in polyethylene. It was previously thought that this model is applicable only to the transport of larger molecules, such as of organic vapors, in polymers.  相似文献   

15.
Solubility measurements of the gases He, Ne, Ar, Kr, Xe, H2, D2, N2, CH4, C2H4, C2H6, CF4, SF6, and CO2 in formaldehyde diethyl acetal in the range of –10 to 30°C, and a gas partial pressure of 1 atmosphere (101.32 kPa) are reported. Standard changes of thermodynamic functions for the solution process are evaluated. The scaled particle theory is used to obtain the effective Lennard-Jones 6, 12 pair potential parameters for formaldehyde diethyl acetal. Experimental solubilities values are compared with those obtained from the application of the scaled particle theory to gas liquid solubility.  相似文献   

16.
Solubility measurements of several nonpolar gases (He, Ne, Ar, Kr, Xe, H2, D2, N2, CH4, C2H4, C2H6, CF4, and SF6) in tetrahydropyran at the temperature range 0 to 30°C and 101.33 kPa partial pressure of gas are reported. Thermodynamic functions for the solution process (Gibbs energy, enthalpy, and entropies) at 25°C are evaluated from the experimental values of the solubility of gases as mole fraction and their variation with the temperature. Lennard-Jones 6–12 pair potential parameters for tetrahydropyran are estimated by using the scale particle theory (SPT); and experimental solubilities are compared with the calculated values using this model. Experimental solubilities of gases in tetrahydropyran and intermolecular potential parameters are compared with those obtained for the same gases in other cycloethers.  相似文献   

17.
Transport properties of several gases in two ethylene-acrylic acid ionomers characterized by a different amount of acrylic acid groups and percentage of neutralization have been investigated. Sorption and permeation experiments have been performed with N2, O2, CO2, CH4, C2 H6, and SF6 in the 25–65°C range and with C3H8 only at 25°C. Gas permeabilities, diffusivities, and solubilities were evaluated along with activation energies and heats of solution. Data obtained in the present investigation were compared to analogous results reported in literature for polyethylene to better highlight the effect of ionic aggregates on the gas transport mechanism. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Sorption of He, H2, N2, O2, Ar, CH4, C2H6, and C2H6 in polybutadiene and the dilation of the polymer due to sorption of the gases are investigated over the pressure range 0-50 atm at 25°C. For CO2 the measurements are made at temperatures ranging from 15 to 80°C. Partial molar volumes of the gases in the polymer are determined. The temperature dependence of partial molar volume is discussed on the basis of the data for CO2. The Flory-Huggins interaction parameters of CO2, C2H4, and C2H6 are also estimated.  相似文献   

19.
Permeation measurements for CO2, CH4, O2, N2, and He were made with three polymers based on bisphenol-A, namely a polyhydroxyether, a polyetherimide, and a polyarylate. Measurements were also made for CO2 and CH4 in polysulfone. The data for CO2, CH4, and N2 plus previous data for these gases in polycarbonate and polysulfone were combined with equilibrium gas sorption data and analyzed with the dual mode/partial immobilization model and the more recent gas-polymer-matrix model. A comparison of the two models was done on the basis of physical interpretations of the resulting parameters. The diffusion coefficient for the Henry's law population was related to the kinetic diameter of the gas. The infinite dilution, Henry's law, and Langmuir diffusion coefficients were related to the free volume of the polymer. The work suggests a means for order-of-magnitude estimation of diffusion coefficients from polymer density and molecular structure.  相似文献   

20.
Gas-separation membrane characteristics of a number of new polyimides containing common dianhydride and diamine moieties, including two copolymers of the regular structure, have been investigated. The densities of polymer films have been measured, and the permeability and diffusion coefficients of H2, CO, CO2, and CH4 gases have been estimated. The values of free volume, solubility coefficients of these gases, and selectivities of gas separation have been determined. The transport parameters of polyimides depend on the combination of rigid and flexible dianhydride and diamine fragments. The combination of rigid dianhydride fragments with rigid diamine moieties and of flexible dianhydride fragments with symmetric flexible diamine moieties is the most promising for membrane applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号