首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The properties of oscillating sooting methane air diffusion flames have been investigated by different methods in order to examine instationary effects in these flames. The pulsation has been induced by modulation of the methane gas flow with an amplitude of 30% of the mean gas flow. The focus of the investigations is on the flame oscillated at 10 Hz, which is close to the frequency of self-induced flickering. Additionally, further measurements at varying frequencies have been performed to determine the transition towards steady-state behavior. Different measurement techniques allowed the determination of soot volume fractions, particle number densities, mean particle radii, particle temperatures, and OH*-chemiluminescence. The oscillating flame shows strong instationary effects and increased soot concentrations compared to the steady-state flame of equivalent mean fuel flow. Accompanying calculations are based on a kinematic analysis of diffusion flames. The model can sufficiently well reproduce the flame height and the contour of the flame. Furthermore, the model describes the asymmetric course of the OH*-emission signal. A simple numerical approach is deduced that explains qualitatively the strong variations of the soot volume fraction in an oscillating flame. This paper is based on work presented at the 2nd ECCOMAS Thematic Conference on Computational Combustion, Delft, 2007.  相似文献   

2.
An inverted step burner has been designed in which a steady ethylene, recirculating flame is established. The burner was housed within a vertical wind tunnel. Laser extinction was used to determine the soot volume fraction in the recirculation zone. Temperatures were determined by a thermocouple. One-dimensional laser-Doppler velocity (LDV) measurements were obtained with a frequency shift system to measure the flow field in the recirculating flame. All the measurements were obtained for a fixed ethylene flow rate; a low and a high velocity in the approach flow were investigated.

Variation in air velocity changed the structure of the flame. At low flow conditions, the soot loading has two distinct peaks at the lower and upper edge of the flame. At the higher air velocity, the upper part of the flame has a much lower relative soot loading as a result of the shorter residence time. The location of the peak values of the soot also changed with the residence time. The peak temperature was of the order of 1600°C. The soot loading was low in the regions of high temperature and relatively high in regions of low temperatures, reflecting the important role of thermal radiation in these luminous flames. The LDV measurements were used to reveal the nature of the flow field. The local soot loading in the flame increased as the approach flow velocity increased; this result suggests the possibility that soot may continue to grow when it is recirculated to regions of growth in a flame.  相似文献   


3.
This is an experimental study of soot formation in precessing jet flames. The Mie diagnostic technique was implemented to provide qualitative visualisation of the zones of soot formation. A range of conditionally sampled experiments was carried out. The characteristic Reynolds number based on the nozzle diameter, was varied from 4329 to 11223 and the Strouhal number based on the nozzle diameter, was varied from 0.0042 to 0.0245. The nozzle diameter was fixed at 5 mm and the jet exit angle at 45 deg. Experimental data were collected and used to show the tendencies in the formation of soot at different experimental conditions. It was found that the relative soot intensity increases with increase in both Re and St numbers. The instantaneous images reveal that soot is predominantly formed in sheets of varying thickness. Very little soot is observed in the near nozzle region, which is consistent with the idea that the formation of soot in appreciable quantities is kinetically limited. Readily observable are very broad regions of low signal spanning much of the flame. These broad regions are more prevalent in the high St number flames where strain rates are lower and residence times are longer. The experimental results support the hypothesis that low strain in a diffusion flame promotes soot formation and high emissivity (i.e., soot formation correlates inversely with flame strain). An erratum to this article can be found at  相似文献   

4.
A non-buoyant laminar diffusion flame has been studied using laser-induced incandescence (LII) and light extinction measurements. The present flame is established within a laminar boundary layer, producing a complex three-dimensional flow field. This produces a three-dimensional soot concentration field. LII can provide spatially resolved three-dimensional concentration measurements of the soot field, nevertheless it requires calibration. Calibration needs to be conducted under identical conditions to the actual measurements, given the complex interaction between the flow field and soot production. This study reports a calibration procedure that allows the determination of a calibration constant correlating LII signal to soot volume fraction. The potential sources of error are identified and quantified.  相似文献   

5.
A tailored interface shock tube and an over-tailored interface shock tube were used to measure the thermal energy radiated during diesel-spray combustion of light oil, α-methylnaphthalene and cetane by changing the injection pressure. The ignition delay of methanol and the thermal radiation were also measured. Experiments were performed in a steel shock tube with a 7 m low-pressure section filled with air and a 6 m high-pressure section. Pre-compressed fuel was injected through a throttle nozzle into air behind a reflected shock wave. Monochromatic emissive power and the power emitted across all infrared wavelengths were measured with IR-detectors set along the central axis of the tube. Time-dependent radii where soot particles radiated were also determined, and the results were as follows. For diesel spray combustion with high injection pressures (from 10 to 80 MPa), the thermal radiation energy of light oil per injection increased with injection pressure from 10 to 30 MPa. The energy was about 2% of the heat of combustion of light oil at P inj = about 30 MPa. At injection pressure above 30 MPa the thermal radiation decreased with increasing injection pressure. This profile agreed well with the combustion duration, the flame length, the maximum amount of soot in the flame, the time-integrated soot volume and the time-integrated flame volume. The ignition delay of light oil was observed to decrease monotonically with increasing fuel injection pressure. For diesel spray combustion of methanol, the thermal radiation including that due to the gas phase was 1% of the combustion heat at maximum, and usually lower than 1%. The thermal radiation due to soot was lower than 0.05% of the combustion heat. The ignition delays were larger (about 50%) than those of light oil. However, these differences were within experimental error.
An abridged version of this paper was presented at the 18th Int. Symposium on Shock Waves at Sendai, Japan during July 21 to 26, 1991 and at the 19th Int. Symposium on Shock Waves at Marseille, France during July 26 to 30, 1993.  相似文献   

6.
 Detection of soot by laser-induced incandescence (LII) and fuel-rich (PAH containing) regions by laser-induced fluorescence (LIF) is demonstrated in a turbulent, Re=2500, ethylene gas-jet diffusion flame. Simultaneous combined LIF–LII images allow identification of regions containing PAH or soot and their relative spatial relationship. Separate LII images confirm the identity of the soot containing regions shown in the LIF–LII images. Variations in the size, structure, spatial location and intensity of the PAH and soot containing regions are shown qualitatively in the images and quantified through histograms of image intensities and spatial extents. Received: 9 September 1996/Accepted: 4 February 1997  相似文献   

7.
In this paper we describe the linear viscoelastic properties of copper phthalocyanine (CuPCN) dispersions that are used in the manufacturing of offset lithographic printing inks. Transmission electron microscopy shows that the primary pigment particles are rod-like and have sizes in the range of 10 to 300 nm. Steady shear measurements show that the dispersions are Newtonian at a pigment volume fraction of 0.073 and become increasingly shear thinning as the pigment volume fraction is increased. The strong shear-thinning nature of these dispersions can be attributed to the highly flocculated nature of the dispersions, which is due to interparticle attractions. The structural complexity of the dispersions also results in an unexpected linear viscoelastic response. While at low frequencies (0.1 and 1.0 Hz) the ex tent of the linear region decreases with increasing pigment concentration, at a higher frequency (10 Hz) the extent of the linear region increases with increasing pigment concentration. This increase in the linear region with increasing pigment concentration suggests that at higher frequencies the dispersion is less brittle, and that the rheological behavior is dominated by intra-aggregate associations. In addition, frequency sweeps show that the dispersions behave like a viscoelastic liquid at low pigment concentrations. However, at higher pigment concentrations (yet significantly lower than the maximum packing fraction) the dispersions behave like a cross-linking polymer at its gel point.  相似文献   

8.
A laminar premixed Propane/Air flame with a fuel equivalence ratio of 2.1 was employed for analysis of soot particles. Zeroth-order Iognormal distributions (ZOLD) were used in the analysis of experimental distribution phenomena at different residence times during soot formation in the flame. Rayleigh‘s theory and Mie‘s scattering theory were combined with agglomerate analysis using scattering and extinction data to determine the following soot characteristics: agglomerate parameters, volumetric fractions, mass flow rates and surface growth rate. Soot density measurements were carried out to determine density variations at different stages of growth. The measured results show that for long residence times the soot clearly crystallizes with higher density (up to 1.8 g.cm3). The increases of soot volumetric fraction and mass flow rate indicate that the surface growth rate of soot particles exceeds the oxidation rates in the flame studied. The data obtained in this work would be used to study soot oxidation rate under flaming condition.  相似文献   

9.
Soot surface temperature was measured in laminar jet diffusion flames at atmospheric and elevated pressures. The soot surface temperature was measured in flames at one, two, four, and eight atmospheres with both pure and diluted (using helium, argon, nitrogen, or carbon dioxide individually) ethylene fuels with a calibrated two-color soot pyrometry technique. These two dimensional temperature profiles of the soot aid in the analysis and understanding of soot production, leading to possible methods for reducing soot emission. Each flame investigated was at its smoke point, i.e., at the fuel flow rate where the overall soot production and oxidation rates are equal. The smoke point was chosen because it was desirable to have similar soot loadings for each flame. A second set of measurements were also taken where the fuel flow rate was held constant to compare with earlier work. These measurements show that overall flame temperature decreases with increasing pressure, with increasing pressure the position of peak temperature shifts to the tip of the flame, and the temperatures measured were approximately 10% lower than those calculated assuming equilibrium and neglecting radiation.  相似文献   

10.
When applying flame sheet models to predict the dynamics of turbulent flames, it is common to model turbulence using ensemble averaging of the velocity. Measurements of the flame dynamics were made to support use this type of methodology, by measuring the dynamic volume of the flame using phase averaged images of the CH chemiluminescence. The dynamics agreed with the common behavior described in the literature, namely frequency scaling according to Strouhal number based on flow convective timescales. However, slightly different timescales were observed for the response magnitude and phase, indicating the possibility of different scaling mechanisms at work between these phenomena. The flame heat release rate dynamics were found to be identical to the dynamic response of the flame volume to inlet velocity perturbations, suggesting a simple proportionality between heat release rate and the flame volume. This result supports the use of ensemble averaging for modeling of the turbulent velocity for predictions of flame dynamics.  相似文献   

11.
Current emphasis in non-premixed turbulent combustion research is focused on the effects of hydrodynamic unsteadiness and transient effects in these flames. To address these effects, measurements of the temperature field in unsteady propane-air flames were made using planar laser-induced fluorescence of the hydroxyl radical to ascertain the effect of fluctuating hydrodynamics on flame temperature. Planar temperature measurements were made at four temporal locations within the 25 Hz velocity fluctuation as a function of initial steady strain rate and forcing amplitude. Results show that temperature in the propane flame is rather insensitive to initial strain rate for these weakly strained flames due to the balance between decreased heat release rate and reduced radiative losses resulting from diminished soot production as the strain rate is increased. The temperature is significantly influenced by the imposed velocity oscillation, however, which causes large fluctuations in the instantaneous strain rate. A decoupling of peak flame temperature and maximum PAH and excited CH concentration indicates significant transient effects resulting from the unsteady flow field even at these low oscillation frequencies. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
The effect of an electric field E on the structure and nitrogen oxide NOx emission of an individual laminar propane diffusion flame is experimentally investigated. The current-voltage characteristics of the flame, its deformation, the fuel-air ratio and the NOx emission are determined for positive and negative burner polarities. A reduction in NOx emission (up to 30% with respect to the emission index) is demonstrated in the case of negative burner polarity. A cause-and-effect relationship between the processes in the flame is proposed: the presence in the flame of positively charged ions and soot particles; the motion of the ions in the E field and the onset of an induced electrohydrodynamic flow directed towards the negatively charged burner; the retention and increase in the concentration of soot particles in the lower region of the flame, which leads to an increase in soot particle radiation and hence to a decrease in the temperature of the flame front and a corresponding reduction in NOx emission. The electrohydrodynamic aspects of the problem are subjected to a qualitative analysis.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 13–23, March–April, 1995.  相似文献   

13.
在低飞行马赫数条件下,乙烯燃料超燃冲压发动机为实现成功点火及稳定燃烧,常使用先锋氢引燃乙烯,本文通过试验研究了多种喷注方案下的超燃燃烧室流动特性、火焰传播特性及燃烧稳定性,喷注方案包括单先锋氢、单乙烯和组合喷注方式.超燃燃烧室入口马赫数为2.0,总温为953 K,总压为0.82 MPa.多种非接触光学测量手段被应用于超...  相似文献   

14.
Data from simultaneous 5?kHz OH-PLIF and Stereo-PIV at the stabilisation region of a propane/ argon lifted diffusion jet flame are presented for jet-exit Reynolds numbers of 10,000 and 15,000. The time history leading to the upstream appearance of flame islands is investigated for both flames. These flame islands are found to be preceded, on average, by a increased out-of-plane fluid velocity. Conditioning local flame statistics on the instantaneous flame base, as indicated by the OH image, permits analysis of upstream and downstream flame motions (in laboratory co-ordinates). The relative velocity is investigated by conditioning out the data with significant out-of-plane fluid velocity. This has introduced greater accuracy over previous attempts at estimating this quantity. No evidence is found for a correlation between increased turbulence intensity or the passage of large scale eddies with increased flame propagation speeds. Furthermore, divergence at the flame base is not found to correlate with upstream flame motion (as a combination of propagation and convection). The volume of the data investigated has led to the development of robust statistics for all quantities presented here.  相似文献   

15.
A series of measurements was taken on two technically premixed, swirl-stabilized methane-air flames (at overall equivalence ratios of ϕ = 0.73 and 0.83) in an optically accessible gas turbine model combustor. The primary diagnostics used were combined planar laser-induced fluorescence of the OH radical and stereoscopic particle image velocimetry (PIV) with simultaneous repetition rates of 10 kHz and a measurement duration of 0.8 s. Also measured were acoustic pulsations and OH chemiluminescence. Analysis revealed strong local periodicity in the thermoacoustically self-excited (or ‘noisy’) flame (ϕ = 0.73) in the regions of the flow corresponding to the inner shear layer and the jet-inflow. This periodicity appears to be the result of a helical precessing vortex core (PVC) present in that region of the combustor. The PVC has a precession frequency double (at 570 Hz) that of the thermo-acoustic pulsation (at 288 Hz). A comparison of the various data sets and analysis techniques applied to each flame suggests a strong coupling between the PVC and the thermo-acoustic pulsation in the noisy flame. Measurements of the stable (‘quiet’) flame (ϕ = 0.83) revealed a global fluctuation in both velocity and heat-release around 364 Hz, but no clear evidence of a PVC.  相似文献   

16.
为研究明火引燃油气着火爆炸特性,建立了半封闭着火爆炸实验平台。通过高速摄影仪拍摄的火焰图像,研究不同油气体积分数下的火焰传播特性。根据高频压力传感器采集的容器内压力变化情况,分析不同油气体积分数下的压力发展特性。结果表明,油气体积分数对火焰组分、火焰传播速度、压力和压力变化速率有显著影响;火焰具有明显的分区现象,可分为燃烧核和火焰阵面,并且纵向火焰阵面速度大于横向火焰阵面速度;容器内压力发展历程可分为4个阶段,而且会形成压力双峰现象;油气爆炸过程中,火焰结构与压力波形成了强烈的耦合作用。  相似文献   

17.
Within the underlying project, the task was to develop methods for optical measurements in a hydrogen-fuelled engine with direct-injection, with the goal of measuring the jet patterns during injection, the stratification of the charge at ignition point and the propagation of the flame during combustion. Therefore, the method of planar laser-induced-fluorescence (PLIF) was chosen. In order to apply this technique for the named tasks, particular methods the visualisation of fuel distribution and the flame front were developed. The measurements were carried out on a single cylinder research engine installed at the Institute for Internal Combustion Engines at Graz University of Technology. This engine features optical access through a quartz-glass liner and a window in the piston while providing a layout equivalent to modern passenger car engines and the possibility to operate in fired mode. As it is hardly feasible to directly excite molecular hydrogen by means of laser light, it is necessary to add a tracer substance to the fuel that provides high fluorescence intensity while not changing the properties of the fuel. Consequently, Triethylamine was chosen as a tracer to be mixed with hydrogen at 200 ppm, which allows it to be used up to a maximum pressure of 200 bar while still providing a strong LIF signal. Due to the excellent linearity of the signal to the local air/fuel-ratio it was possible to develop a method for the calibration of the images in order to compensate for inhomogeneities of the laser beam and staining of the optical access and to ultimately allow a quantification of the fuel distribution. The results are images scaled on air/fuel-ratio which can be used for a direct optimisation of mixture formation processes and the validation of CFD-models. For the analysis of the combustion process the method was adapted with two different approaches. For homogeneous charges a new method was applied by marking the flame front using the tracer within the fuel, so that both are burned together. However, as this method is limited to measurements with a homogeneous distribution of tracer within the measured volume, an alternative technique had to be applied for the measurement of stratified charges. In this case, a direct visualisation of the flame front was achieved by exciting the OH-radicals formed during combustion. As this method has significantly increased demands on measuring equipment and is more time consuming, both methods are used in parallel on specific measuring tasks.  相似文献   

18.
Instability of buoyant diffusion flames   总被引:1,自引:0,他引:1  
Buoyant jet diffusion flames are known to exhibit large scale vortical flow structures strongly interacting with flame structures. In the present work, the formation and evolution of coherent flow structures is studied in a methane/ air coflow arrangement. This is accomplished by utilizing visualization techniques (planar laser induced hydroxyl fluorescence and Mie-scattering) and Laser Doppler Velocimetry. A striking repeatability and correlation of evolving coherent structures of the air co-flow and the reaction zone is observed. In the transitional region, flow and flame structures oscillate at very pure frequencies ranging from 10–15 Hz. A local absolutely unstable velocity profile close to the burner rim seems to be responsible. Self-excited axisymmetric wavelike structures propagate up- and downstream of this location. We study the influence of the exit velocities and the type of coflowing oxidizer (air or oxygen) on the location of transition to periodic flow structures and related frequencies. Conditional averages of image and velocity data are employed to describe the evolution of coherent flow structures and their interaction with flame structures.The authors wish to thank the Deutsche Forschungsgemeinschaft for financial support under contract Kn 118/22-2.  相似文献   

19.
Song  Erzhuang  Lei  Qingchun  Chi  Yeqing  Fan  Wei 《Flow, Turbulence and Combustion》2022,109(1):125-142

The flame pocket formation, including reactant pocket, product pocket, soot pocket, and fluid parcel, is a common phenomenon in turbulent combustion occurred as a response of the flame to flow straining and shearing. Understanding pocket behavior is vital to study the flames in such a regime. This work addresses the research need to experimentally measure and track multiple flame pockets in 3D. For this purpose, volumetric measurements were performed to measure the high-speed turbulent flame structure at 15 kHz based on emission tomography. With the 3D flame structures, a new tracking algorithm was developed to identify and track the multiple flame pockets simultaneously in 3D. The instantaneously tracked 3D flame pockets enabled the extraction of key properties of pocket dynamics, including the favorable formation location, 3D3C movement speed, and pocket expanding/shrinking speed. The developed methods were evidently able to resolve the detailed behavior of flame pockets in highly turbulent flames.

  相似文献   

20.
The extinction limits of unforced and periodically forced turbulent counterflow flames have been measured with equivalence ratios of relevance to lean-burn gas turbines. Thus, the opposed flows comprised mixtures of methane and air with the same equivalence ratios in the two streams in the range of 0.5 to 0.7 and also mixtures with equivalence ratios less than 0.7 in one flow and the other with an equivalence ratio of 0.9. The oscillations were imposed by loudspeakers and forced flame extinction was shown to depend on the total duration of pulsation. Extinction times were measured by forcing the flow with a sinusoidal signal of specified frequency, amplitude and duration and, if extinction did not occur, the time of pulsation was increased and the procedure was repeated until extinction took place. A form of chemiluminescence was used to observe the flame front with and without oscillation and gated measurements of the axial and radial velocity components quantified the phase lag between the input signal and the flow as a function of frequency. Extinction strain rates increased with equivalence ratio and were greater for asymmetric than symmetric flames with the same total quantity of fuel and total equivalence ratios below 0.7, based on the fuel and air mixtures of both streams. For example, asymmetric flames of 0.6 total equivalence ratio extinguished at bulk strain rates 70% higher than those of symmetric flames. The forced flames withstood instantaneous strain rates larger than the critical values for unforced flame extinction and survived for up to 100 cycles in the frequency range from 200 to 1000 Hz with instantaneous strain rates equal to the unforced extinction limit. Symmetric flames had shorter extinction timescales and were more sensitive to changes in the equivalence ratio than asymmetric flames of the same total quantity of fuel. The visualisation showed that the light intensity emitted from CH radicals varied in phase with velocity signals so that it initially decreased with increasing strain and increased as the strain reduced, consistent with a tendency to extinguish and then re-light. Received: 16 March 1998/ Accepted: 26 October 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号