首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 252 毫秒
1.
We report the first scanning tunneling microscope (STM) investigation, combined with density functional theory calculations, to resolve controversy regarding the bonding and structure of chlorine adsorbed on Au(111). STM experiments are carried out at 120 K to overcome instability caused by mobile species upon chlorine adsorption at room temperature. Chlorine adsorption initially lifts the herringbone reconstruction. At low coverages (<0.33 ML), chlorine binds to the top of Au(111)-(1 x 1) surface and leads to formation of an overlayer with (square root(3) x square root(3))R30 degree structure at 0.33 ML. At higher coverages, packing chlorine into an overlayer structure is no longer favored. Gold atoms incorporate into a complex superlattice of a Au-Cl surface compound.  相似文献   

2.
The effect of sulfur on alkoxide formation and decomposition on the Ni(100) surface has been investigated with STM and LEED. At low coverage sulfur adsorbs into a p(2 x 2) structure, in agreement with LEED measurements and previous STM results. With increasing sulfur coverage, the p(2 x 2) structure saturates the surface and scattered domains of c(2 x 2) appear. Further increases in sulfur coverage affect increases in c(2 x 2) domain sizes; the state of the sulfur-covered surface up to 0.43 ML is characterized by p(2 x 2) and c(2 x 2) domains. STM measurements of the evolution of the sulfur-covered surface with D(2)S(g) adsorption are suggestive of sulfur nucleation and growth at multiple sites on the surface. Alkoxide formation on these surfaces was studied following exposure to ROH (R = CH(3), CH(3)CH(2), CH(3)CH(2)CH(2), and C(6)H(5)). The alkoxy surface intermediates adsorbed in p(2 x 2)-S vacancies and, in the case of phenoxy, between hollow sites. Agreement between the methoxy coverage determined by XPS and the fraction of the surface covered with p(2 x 2)-S, as determined by STM, suggests that the p(2 x 2) vacancies are the sites of methoxy adsorption, and hence the active sites for selective poisoning.  相似文献   

3.
Scanning tunneling microscopy (STM) has been used to directly investigate the local structure of methyl isocyanide (CNCH3) adsorbed on Pt(111). At low coverages, CNCH3 is preferentially adsorbed at on-top sites, in agreement with earlier deductions based on vibrational spectroscopy. When dosed at low coverages at 50 K, the molecules tend to adsorb near other CNCH3 molecules with preferred distances of a and a, where a = 2.78 A is the lattice constant of Pt. Annealing the surface to 120 K, however, results in a more uniform separation of the molecules. At higher coverages, the CNCH3 molecules are observed to occupy both on-top and two-fold bridge sites. On the basis of STM image analysis, CNCH3 forms an ordered layer of (2 x 3) periodicity at 0.33 ML. Additional details on the structures of CNCH3 adsorbed at the on-top and two-fold bridge sites are provided by density functional theory (DFT) calculations. At a coverage that saturates the first layer (0.33 ML), the occupation ratio for the on-top and two-fold bridge bonded CNCH3 is 1:1, which is consistent with the results obtained from the combined use of experimental reflection absorption infrared spectroscopy (RAIRS) data and DFT calculations.  相似文献   

4.
The adsorption and thermal desorption of Zn and ZnO on Pd(111) was studied in the temperature range between 300 and 1300 K with TDS, LEED, and CO adsorption measurements. At temperatures below 400 K, multilayer growth of Zn metal on the Pd(111) surface takes place. At a coverage of 0.75 ML of Zn, a p(2 x 2)-3Zn LEED structure is observed. Increasing the coverage to 3 ML results in a (1 x 1) LEED pattern arising from an ordered Zn multilayer on Pd(111). Thermal desorption of the Zn multilayer state leads to two distinct Zn desorption peaks: a low-temperature desorption peak (400-650 K) arising from upper Zn layers and a second peak (800-1300 K) originating from the residual 1 ML Zn overlayer, which is more strongly bound to the Pd(111) surface and blocks CO adsorption completely. Above 650 K, this Zn adlayer diffuses into the subsurface region and the surface is depleted in Zn, as can be deduced from an increased amount of CO adsorption sites. Deposition of >3 ML of Zn at 750 K leads to the formation of a well-ordered Pd-Zn alloy exhibiting a (6 x 4 square root 3/3)rect. LEED structure. CO adsorption measurements on this surface alloy indicate a high Pd surface concentration and a strong reduction of the CO adsorption energy. Deposition of Zn at T > 373 K in 10(-6) mbar of O2 leads to the formation of an epitaxial (6 x 6) ZnO overlayer on Pd(111). Dissociative desorption of ZnO from this overlayer occurs quantitatively both with respect to Zn and O2 above 750 K, providing a reliable calibration for both ZnO, Zn, and oxygen coverage.  相似文献   

5.
The self-assembly of a nickel-porphyrin derivative (Ni-DPPyP) containing two pyridyl coordinating sites and two pentyl chains at trans meso positions was studied with scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and low energy electron diffraction (LEED) on Au(111). Deposition of Ni-DPPyP onto Au(111) gave rise to a close-packed network for coverages smaller or equal to one monolayer as revealed by STM and LEED. The molecular arrangement of this two-dimensional network is stabilized via hydrogen bonds formed between the pyridyl's nitrogen and hydrogen atoms from the pyrrole groups of neighboring molecules. Subsequent deposition of cobalt atoms onto the close-packed network and post-deposition annealing at 423 K led to the formation of a Co-coordinated hexagonal porous network. As confirmed by XPS measurements, the porous network is stabilized by metal-ligand interactions between one cobalt atom and three pyridyl ligands, each pyridyl ligand coming from a different Ni-DPPyP molecule.  相似文献   

6.
The adsorption of racemic alanine on the Cu(110) surface has been compared to that of enantiopure alanine using low-energy electron diffraction (LEED), reflection absorption infrared spectroscopy (RAIRS), and scanning tunneling microscopy (STM). No evidence of chiral resolution at the surface was observed for the racemic system, indicating that the formation of separate enantiopure areas is not preferred. Also, in contrast to the enantiopure system, no chirally organized phase was observed for the racemic system. LEED shows that both systems display a common (3 x 2) phase at high coverage. However, the pathway and kinetic barriers to this phase differ markedly for the racemic and the enantiopure systems, with the racemic (3 x 2) appearing at a temperature that is more than 100 K below that required for the enantiopure system. In addition, we report intriguing complexities for the (3 x 2) LEED structure that is ubiquitous in amino acid/Cu(110) systems. First, a common (3 x 2) pattern with a zigzag distortion can be associated with both the racemic and enantiopure systems. For the racemic system, the coverage can be increased further to give a "true" (3 x 2) LEED pattern, which is a transformation that is impossible to enact for the enantiopure system. Most importantly, STM images of the "distorted" and "true" (3 x 2) structures created in the racemic system show subtle differences with neither arrangement being fully periodic over distances greater than a few molecules. Thus, the (3 x 2) phase appears to be more complicated than at first indicated and will require more complex models for a full interpretation.  相似文献   

7.
Ultraviolet photoelectron spectroscopy (UPS), work function measurements, low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM) have been used to study the adsorption and desorption of 1-ethyl-3-methylimidazolium bis[(trifluoromethyl)sulfonyl]imide, [C(2)C(1)Im][Tf(2)N], on the (1×2) clean surface reconstruction of Au(110) in the temperature range 100-674 K. The ionic liquid adsorbed without decomposition, and desorbed without leaving any residue on the surface. For adsorption at room temperature a monolayer of strongly bound ionic liquid was formed with four interface states visible in UP spectra. STM at 100 K showed that the monolayer consisted of well-ordered rows of adsorbed ionic liquid aligned parallel to the close packed rows of surface gold atoms (the [110] direction) with a separation of ×2 (the same as the clean surface reconstruction) between the rows in the orthogonal [001] direction. Multilayer adsorption at room temperature occurred by droplet formation followed by smoothing of the droplets to a layered morphology with time. Heating caused multilayer desorption at temperatures in the 363-383 K range, followed by partial monolayer desorption at 548 K to produce a Au(110)-(1×3) reconstructed surface with sub-monolayer domains of ionic liquid. Desorption of the remaining ionic liquid at 600 K caused the gold surface to reconstruct back to the clean (1×2) reconstruction.  相似文献   

8.
The adsorption of pyrimidine onto Ge(100) surfaces has been investigated using real-time scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), and density-functional theory (DFT) calculations. Our results show that the adsorbed pyrimidine molecules are tilted about 40 degrees with respect to the Ge surface, and through a Lewis acid-base reaction form bridges between the down-Ge atoms of neighboring Ge dimer rows by double Ge-N dative bonding without loss of aromaticity. For coverages of pyrimidine up to 0.25 ML, a well-ordered c(4x2) structure results from states that appear in STM micrographs as oval-shaped protrusions, which correspond to pyrimidine molecules datively adsorbed on every other dimer. However, above 0.25 ML, the oval-shaped protrusions gradually change into brighter zigzag lines. At 0.50 ML, a p(2x2) structure results from the states that appear in STM as zigzag lines. The zigzag lines are formed by the attachment of pyrimidine molecules to the down-Ge atoms of every Ge dimer. However, the unstable p(2x2) structure eventually reconstructs into a c(4x2) structure due to steric hindrance between the adsorbed pyrimidine molecules after stopping the exposure of pyrimidine to the surface.  相似文献   

9.
《Progress in Surface Science》1998,59(1-4):117-134
Nanoscale pyramidal facets with (211) faces are formed when W(111) surface is covered by monolayer film of certain metals (including Pt, Pd and Au) and annealed to T ≥ 750 K. In the present work, we focus on the structure, electronic properties and reactivity of planar W(211) covered by ultrathin films of platinum and palladium. The measurements include soft X-ray photoelectron spectroscopy using synchrotron radiation, Auger electron spectroscopy, low energy electron diffraction (LEED) and thermal desorption spectroscopy. The metal film growth and evolution during annealing has been investigated for coverages ranging from 0 to 8 monolayers. The films grow initially in a layer-by-layer mode at 300 K. LEED, Auger, and Surface Core Level Shift (SCLS) measurements reveal that for coverages of one monolayer, the films are stable up to temperatures at which desorption occurs. In contrast, at higher coverages, SCLS data indicate that surface alloys are formed upon annealing films of Pt and Pd; surface alloy formation is not seen for Au overlayers. These findings are discussed in terms of structural and electronic properties of these bimetallic systems. Relevance to catalytic properties for acetylene cyclization over Pd/W(211) is also discussed.  相似文献   

10.
In-situ FTIR spectroscopic and electrochemical data, and ex-situ (emersion) electron diffraction (LEED and RHEED) and Auger electron spectroscopic (AES) data are presented on the structure and reactivity, with respect to the electro-oxidation of CO, of the Ru(0001) single crystal surfaces in perchloric acid solution. In both the absence and presence of adsorbed CO, the Ru(0001) electrode shows the potential-dependent formation of well-defined and ordered oxygen-containing adlayers. At low potentials (eg. from -80 to +200 mV vs Ag/AgCl), a (2 x 2)-O phase is formed, which is unreactive toward CO oxidation, in agreement with UHV studies; increasing the potential results in the formation of (3 x 1) and (1 x 1) phases at 410 mV and 1100 mV, respectively, with a concomitant increase in the reactivity of the surface toward CO oxidation. Both linear (COL) and threefold-hollow (COH) binding CO adsorbates (bands at 2000-2040 cm-1 and 1770-1800 cm-1, respectively) were observed on the Ru(0001) electrode. The in-situ FTIR data show that the adsorbed CO species still remain in compact islands as CO oxidation proceeds, suggesting that the oxidation occurs at the boundaries between the COad and active Oad domains via the Langmuir-Hinshelwood mechanism. At low CO coverages,reversible relaxation, (at lower potentials), and compression, (at higher potentials), of the COL adlayer were observed and rationalised in terms of the reduction and formation of surface O-adlayers, The data obtained from the Ru(0001) electrode are in marked contrast to those observed at polycrystalline Ru, where only linear CO is observed.  相似文献   

11.
Static and dynamic density functional calculations have been used to study the structure and energetics of water adsorbed on the main cleavage plane of ZnO. In the single molecule limit we find that molecular adsorption is strongly preferred. The water binding energy increases for higher coverages due to an almost isotropic attractive water-water interaction which leads to clustering and formation of monolayer islands in the low water coverage regime. A thermodynamic analysis further shows that the full water monolayer is clearly the most stable phase until water starts to desorb. The water monolayer is even more stabilized by a partial dissociation of the water molecules, yielding as most stable configuration a (2x1) superstructure where every second water molecule is cleaved. The dissociation barrier for this process is very small which allows for an auto-dissociation of the water molecules even at low temperatures as observed experimentally. Finally we find that the energy cost involved to form [1210]-oriented domain boundaries between (2x1) patches with different orientation is almost negligible which explains the abundance of such domain boundaries in STM images.  相似文献   

12.
Exposing water to a (2 x 2)-O precovered Pt(111) surface at 100 K and subsequently annealing at 155 K led to the formation of a well-ordered (square root 3 x square root 3)R30 degrees overlayer. The structure of this overlayer is determined by DFT and full dynamical LEED calculations. There are two O containing groups per (square root 3 x square root 3)R30 degrees unit cell and both occupy near on-top positions with a Pt-O bond length of (2.11 +/- 0.04) A. DFT calculations determined the hydrogen positions of the OH species and clearly indicate hydrogen bonds between the neighboring adsorbed OH groups whose interaction is mainly of electrostatic nature. A theoretical comparison with H(2)O shows the hybridization of OH on Pt(111) to be sp(3).  相似文献   

13.
This study addresses a fundamental question in surface science: the adsorption of halogens on metal surfaces. Using synchrotron radiation-based high-resolution X-ray photoelectron spectroscopy (XPS), temperature-programmed XPS, low-energy electron diffraction (LEED) and density functional theory (DFT) calculations, we investigated the adsorption and thermal stability of bromine on Rh(111) in detail. The adsorption of elemental bromine on Rh(111) at 170 K was followed in situ by XPS in the Br 3d region, revealing two individual, coverage-dependent species, which we assign to fcc hollow- and bridge-bound atomic bromine. In addition, we find a significant shift in binding energy upon increasing coverage due to adsorbate-adsorbate interactions. Subsequent heating shows a high thermal stability of bromine on Rh(111) up to above 1000 K, indicating strong covalent bonding. To complement the XPS data, LEED was used to study the long-range order of bromine on Rh(111): we observe a (√3×√3)R30° structure for low coverages (≤0.33 ML) and a star-shaped compression structure for higher coverages (0.33–0.43 ML). Combining LEED and DFT calculations, we were able to visualize bromine adsorption on Rh(111) in real space for varying coverages.  相似文献   

14.
The chemisorption of the undissociated CH3SH molecule on the Au(111) surface has been studied at 5 K using scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. The molecule was found to adsorb on atop Au sites on the defect-free surface. CH3SH undergoes hindered rotation about the Au-S bond on the defect-free surface which is seen in STM as a time-averaged 6-fold pattern. The pattern suggests that the potential minima directions occur for the rotating molecule at the six hollow sites surrounding the atop adsorption site. The barrier for rotation, obtained by DFT calculations, is approximately 0.1 kcal.mol(-1). At low coverages, preferential adsorption occurs at defect sites in the surface, namely, the herringbone "elbows" and random atomic step sites. Molecules adsorbed on these sites do not exhibit rotational freedom.  相似文献   

15.
Low temperature scanning tunneling microscopy (STM) studies of metal-free phthalocyanine (H2Pc) adsorbed on highly oriented pyrolytic graphite (HOPG) have shown ordered arrangement of molecules for low coverages up to 1 ML. Evaporation of H2Pc onto HOPG and annealing of the sample to 670 K result in a densely packed structure of the molecules. Arrangements of submonolayer, monolayer, and monolayer with additional adsorbed molecules have been investigated. The high resolution of our investigations has permitted us to image single molecule orientation. The molecular plane is found to be oriented parallel to the substrate surface and a square adsorption unit cell of the molecules is reported. In addition, depending on the bias voltage, different electronic states of the molecules have been probed. The characterized molecular states are in excellent agreement with density functional theory ground state simulations of a single molecule. Additional molecules adsorbed on the monolayer structures have been observed, and it is found that the second layer molecules adsorb flat and on top of the molecules in the first layer. All STM measurements presented here have been performed at a sample temperature of 70 K.  相似文献   

16.
Coverage-dependent adsorption of atomic sulfur on Fe(110): a DFT study   总被引:1,自引:0,他引:1  
Adsorption of atomic sulfur at different coverages on the Fe(110) surface is examined using density functional theory (DFT) in order to investigate the effect that adsorbate-adsorbate interactions may have on the surface properties. S is adsorbed in the high-symmetry adsorption sites: 4-fold hollow, bridge, and atop sites in the following surface arrangements: c(2 x 2) and p(1 x 1) which correspond to coverages of 1/2 and 1 monolayer, respectively. The binding energy, work function change, adsorption geometry, charge density distribution, magnetic properties, and density of states are examined and compared to our previous study of S adsorbed at 1/4 monolayer coverage and p(2 x 2) arrangement [Spencer et al. Surf. Sci. 2003, 540, 420]. It was found that S forms polar covalent bonds to the surface. The bonding goes from being S-Fe dominated at the low coverages to being S-S dominated at the higher coverages where the S atoms are located closer together on the surface and interact with each other.  相似文献   

17.
The growth of epitaxial ultrathin BaTiO(3) films on a Pt(100) substrate has been studied by scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), and x-ray photoelectron spectroscopy (XPS). The films have been prepared by radio-frequency-assisted magnetron sputter deposition at room temperature and develop a long-range order upon annealing at 900 K in O(2). By adjusting the Ar and O(2) partial pressures of the sputter gas, the stoichiometry was tuned to match that of a BaTiO(3)(100) single crystal as determined by XPS. STM reveals the growth of continuous BaTiO(3) films with unit cell high islands on top. With LEED already for monolayer thicknesses, the formation of a BaTiO(3)(100)-(1 × 1) structure has been observed. Films of 2-3 unit cell thickness show a brilliant (1 × 1) LEED pattern for which an extended set of LEED I-V data has been acquired. At temperatures above 1050 K the BaTiO(3) thin film starts to decay by formation of vacancy islands. In addition (4 × 4) and (3 × 3) surface reconstructions develop upon prolonged heating.  相似文献   

18.
The adsorption structures of pyrrole (C(4)H(5)N) on a Ge(100) surface at various coverages have been investigated with both scanning tunneling microscopy (STM) and ab initio density-functional theory (DFT) calculations. Three distinct features are observed in the STM images at low coverages. The comparison of the STM images with the simulation reveals that the most dominant flowerlike feature with a dark side is that the adsorbed pyrrole molecules with H dissociated form bridges between two down Ge atoms of neighboring Ge dimer rows through N-Ge bonding and beta-carbon-Ge interaction. The flowerlike feature without a dark side is also observed as a minority, which is identified as nearly the same structure as the most dominant one where a dissociated H is out of the feature. The third feature showing bright protrusions may be due to a C- and N-end-on (CN) configuration, where the pyrrole molecule is located on one dimer row. At higher coverages, the number of localized configurations increases.  相似文献   

19.
First-principles pseudopotential calculations, within a simple dynamically constrained scheme, have been performed to investigate the reaction of 0.25 ML coverage of SiH4 and Si2H6 with the Si(001)-(2 x 2) surface. The silane molecule (SiH4) is adsorbed on to the surface at a number of different sites (on dimer, interrow, or intrarow) with varying barrier heights. Two distinct structures, which are similar in energy, arise from the initial dissociative reaction SiH4-->SiH3(silyl) + H, where the dissociated species are adsorbed either on the same dimer components or on adjacent dimer components. Several further decays of silyl from SiH4 are presented in two separate regimes of high and low ambient hydrogen coverages. The decomposition of silyl can form two different bridging structures: an on top or an intrarow bridging structure in both of the two hydrogen coverage regimes. The disilane molecule (Si2H6) is also adsorbed upon this surface with varying energy barriers, resulting in a dissociation reaction where two SiH3 species are adsorbed on one dimer or in an adjacent dimer configuration. Plausible energy reaction paths for the above models are presented. The stability of the SiH2 species is also discussed.  相似文献   

20.
The chemisorption of methyl and phenyl iodide has been studied at Cu(110) and Ag(111) surfaces at 290 K with STM and XPS. At both surfaces dissociative adsorption of both molecules leads to chemisorbed iodine, with the STM showing c(2 x 2) and (square root 3 x square root 3)R30 structures at the Cu(110) and Ag(111) surfaces, respectively. At the Cu(110) surface a comparison of coexisting c(2 x 2) I(a) and p(2 x 1) O(a) domains shows the iodine adatoms to be chemisorbed in hollow sites with evidence at low coverage for diffusion in the (110) direction. In the case of methyl iodide no carbon adsorption is observed at either the silver or the copper surfaces, but chemisorbed phenyl groups are imaged at the Cu(110) surface after exposure to phenyl iodide. The STM images show the phenyl groups as bright features approximately 0.7 nm in diameter and 0.11 nm above the iodine adlayer, reaching a maximum surface concentration after approximately 6 Langmuir exposure. However, the phenyl coverage decreases with subsequent exposures to PhI and is negligible by approximately 1000 L exposure, consistent with the formation and desorption of biphenyl. The adsorbed phenyls are located above hollow sites in the substrate, they are stabilized at the top and bottom of step edges and in paired chains (1.1 nm apart) on the terraces with a regular interphenyl spacing within the chains of 1.0 nm in the (110) direction. The interphenyl ring spacing and diffusion of individual phenyls from within the chains shows that the chains do not consist of biphenyl species but may be a precursor to their formation. Although the XPS data shows carbon present at the Ag(111) surface after exposure to PhI, no features attributable to phenyl groups were observed by STM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号