首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A gas chromatography method with mass spectrometric detection is described for the determination of Salvinorin A, the main active ingredient of the hallucinogenic mint Salvia divinorum. The method was validated in plasma, urine, saliva and sweat using 17-alpha-methyltestosterone as internal standard. The analytes were extracted from biological matrices with chloroform/isopropanol (9:1, v/v). Chromatography was performed on a 5% phenyl methyl silicone capillary column and analytes were determined in the selected ion monitoring mode. The method was validated over the concentration range 0.015-5 microg/mL plasma, urine and saliva and 0.01-5 microg/patch in the case of sweat. Mean recoveries ranged between 77.1 and 92.7% for Salvinorin A in different biological matrices, with precision and accuracy always better than 15%. The method was applied to the analysis of urine, saliva and sweat from two consumers after smoking 75 mg plant leaves to verify the presence of the active ingredient of S. divinorum in human biological fluids as a biomarker of plant consumption. Salvinorin A was detected in urine (2.4 and 10.9 ng/mL) and saliva (11.1 and 25.0 ng/mL), but not in sweat patches from consumers.  相似文献   

2.
A simple and sensitive method was developed for the determination of erythromycin A (EA), decladinosyl erythromycin A (dClEA) and erythromycin B (EB) in rat plasma and urine by high-performance liquid chromatography with electrogenerated chemiluminescence detection using Tris(2,2'-bipyridine)ruthenium(II). The recovery rates of EA, dClEA and EB were 97, 94 and 85% from rat plasma and 89, 83 and 93% from rat urine, respectively. The calibration curves were linear over the concentration ranges 0.05-5 microg/mL for plasma and 0.5-50 microg/mL for urine. The precision and accuracy for all analytes in rat plasma were < or =9.0 and -6.3-7.2%, and those in urine were < or =9.4% and -6.1-7.6%, respectively. This method proved to be a powerful tool for determination of EA, dClEA and EB concentrations in samples from rats.  相似文献   

3.
The aim of this study was to develop an automated sampling method to measure lovastatin in a conscious and freely moving rat. The blood samples were collected by means of the automated blood sampling system DR-II and the faecal samples were collected using a metabolic cage. The concentration of lovastatin was determined by a reversed-phase liquid chromatographic system with a UV absorbance detector. The mobile phase contained acetonitrile and 10 mm NaH2PO4 in the proportions 60:40 (v/v) with a flow-rate of 1 mL/min. The calibration curve was linear in concentration ranges of 0.05-100 and 0.1-100 microg/mL for lovastatin in blood and faecal samples, respectively. Following pharmacokinetic analysis, we identified that the maximum plasma concentration was around 1.18 +/- 0.08 microg/mL at concentration peak time 120 min and almost 78% of loading dose was accumulated in the faeces within 48 h after lovastatin administration (500 mg/kg, p.o.).  相似文献   

4.
5.
Wei F  Fan Y  Zhang M  Feng YQ 《Electrophoresis》2005,26(16):3141-3150
A method based on in-tube solid-phase microextraction and capillary zone electrophoresis (CZE) was proposed for simultaneously determining four amphetamines (amphetamine, methamphetamine, 3,4-methylenedioxyamphetamine, and 3,4-methylenedioxymethamphetamine) in urine. A poly(methacrylic acid-ethylene glycol dimethacrylate) monolithic capillary column, which can provide sufficient extraction efficiency, was introduced for the extraction of amphetamines from urine samples. The hydrophobic main chains and acidic pendant groups of the monolithic column make it a superior material for extraction of basic analytes from aqueous matrix. After extraction, the samples were analyzed by CZE. The best separation was achieved using a buffer composed of 0.1 M disodium hydrogen phosphate (adjusted to pH 4.5 with 1 M hydrochloric acid) and 20% methanol v/v, with a temperature and voltage of 25 degrees C and 20 kV, respectively. By applying electrokinetic injection with field-amplified sample stacking, detection limits of 25-34 microg/L were achieved. Excellent method of reproducibility was found over a linear range of 0.1-5 mg/L. Determination of these analytes from abusers' urine sample was also demonstrated.  相似文献   

6.
A robust ultra‐performance liquid chromatography–tandem mass spectrometry (UPLC–MS/MS) method for the determination of morphine‐6‐d ‐glucuronide (M6G), morphine‐3‐d ‐glucuronide (M3G) and morphine (MOR) in human plasma and urine has been developed and validated. The analytes of interest were extracted from plasma by protein precipitation. The urine sample was prepared by dilution. Both plasma and urine samples were chromatographed on an Acquity UPLC HSS T3 column using gradient elution. Detection was performed on a Xevo TQ‐S tandem mass spectrometer in multiple reaction monitoring mode using positive electrospray ionization. Matrix interferences were not observed at the retention time of the analytes and internal standard, naloxone‐D5. The lower limits of quantitation of plasma and urine were 2/0.5/0.5 and 20/4/2 ng/mL for M6G/M3G/MOR, respectively. Calibration curves were linear over the concentration ranges of 2–2000/0.5–500/0.5–500 and 20–20,000/4–4000/2–2000 ng/mL for M6G/M3G/MOR in plasma and urine samples, respectively. The precision was <7.14% and the accuracy was within 85–115%. Furthermore, stability of the analytes at various conditions, dilution integrity, extraction recovery and matrix effect were assessed. Finally, this quantitative method was successfully applied to the pharmacokinetic study of M6G injection in Chinese noncancer pain patients.  相似文献   

7.
A new method for the qualitative and quantitative analysis of gamma-hydroxybutyric acid (GHB) in plasma and urine samples is described. It involves the conversion of GHB to gamma-butyrolactone (GBL), its subsequent headspace solid-phase microextraction (SPME), and detection by gas chromatography/positive ion chemical ionization mass spectrometry (GC/PICI-MS), using D(6)-GBL as internal standard. The assay is linear over a plasma GHB range of 1-100 microg/mL (n = 5, r = 0.999) and a urine GHB range of 5-150 microg/mL (n = 5, r = 0. 998). Relative intra- and inter-assay standard deviations, determined for plasma and urine samples at 5 and 50 microg/mL, are all below 5%. The method is simple, specific and reasonably fast. It may be applied for clinical and forensic toxicology as well as for purposes of therapeutic drug monitoring.  相似文献   

8.
A reliable micellar electrokinetic capillary chromatographic method was developed and validated for the determination of lamotrigine and its metabolites in human plasma and urine. The variation of different parameters, such as pH of the background electrolyte (BGE) and Sodium dodecyl sulfate (SDS) concentration, were evaluated in order to find optimal conditions. Best separation of the analytes was achieved using a BGE composed of 10 mM borate and 50 mM SDS, pH 9.5; melatonin was selected as the internal standard. Isolation of lamotrigine and its metabolites from plasma and urine was accomplished with an original solid-phase extraction procedure using hydrophilic-lypophilic balance cartridges. Good absolute recovery data and satisfactory precision values were obtained. The calibration plots for lamotrigine and its metabolites were linear over the 1-20 microg/mL concentration range. Sensitivity was satisfactory; the limits of detection and quantitation of lamotrigine were 500 ng/mL and 1 microg/mL, respectively. The application of the method to real plasma samples from epileptic patients under therapy with lamotrigine gave good results in terms of accuracy and selectivity, and in agreement with those obtained with an high-performance liquid chromatography (HPLC) method.  相似文献   

9.
This report describes the development and validation of an LC‐MS/MS method for the quantitative determination of glyburide (GLB), its five metabolites (M1, M2a, M2b, M3 and M4) and metformin (MET) in plasma and urine of pregnant patients under treatment with a combination of the two medications. The extraction recovery of the analytes from plasma samples was 87–99%, and that from urine samples was 85–95%. The differences in retention times among the analytes and the wide range of the concentrations of the medications and their metabolites in plasma and urine patient samples required the development of three LC methods. The lower limit of quantitation (LLOQ) of the analytes in plasma samples was as follows: GLB, 1.02 ng/mL; its five metabolites, 0.100–0.113 ng/mL; and MET, 4.95 ng/mL. The LLOQ in urine samples was 0.0594 ng/mL for GLB, 0.984–1.02 ng/mL for its five metabolites and 30.0 µg/mL for MET. The relative deviation of this method was <14% for intra‐day and inter‐day assays in plasma and urine samples, and the accuracy was 86–114% in plasma, and 94–105% in urine. The method described in this report was successfully utilized for determining the concentrations of the two medications in patient plasma and urine. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A rapid and simple high-performance liquid chromatographic method with photodiode array detection was developed for the separation and the simultaneous determination of phenytoin and dextromethorphan in human urine. Analysis was performed in less than 4.5 min in isocratic mode on a reversed-phase C18 column (5 microm; 150 x 4.6 mm) using a mobile phase composed of acetonitrile-buffer phosphate 0.01 M (60:40, v/v) adjusted to pH 6.0, at 1 mL/min flow rate and UV absorbance at 210 nm. The elution order of analytes was dextromethorphan (DXM), Internal Standard (IS), and phenytoin (PHT). Calibration curves were linear in the 7.5-25 microg/mL range for PHT and in the 10-30 microg/mL range for DXM. Spike recoveries for urine samples prepared at three spiking levels ranged from 97.8 to 102.3% for PHT and from 94.8 to 100.4% for DXM. The detection limit (LOD) values ranged from 0.08 microg/mL for PHT to 0.5 microg/mL for DXM. The quantitation limit (LOQ) values ranged from 0.3 microg/mL for PHT to 1.6 microg/mL for DXM. The sample preparation method involves a rapid and simple procedure based on solid-phase extraction using a C18 reversed-phase column. Validation of the optimised method was carried out according to the ICH guidelines. The method developed in this study allows the reliable simultaneous analysis of PHT and DXM, drugs that were never quantified together in previously reported analytical methods. The described method has the advantage of being rapid and easy and it could be applied in therapeutic monitoring of these drugs in human urine of epileptic patients.  相似文献   

11.
杨秀敏  王志  王春  韩丹丹  陈永艳  宋双居 《色谱》2007,25(3):362-366
应用中空纤维液相微萃取(HP-LPME)技术建立了水样中呋喃丹、西维因、异丙威和乙霉威的高效液相色谱分析方法。对影响HP-LPME的实验条件进行了优化。采用Accurel Q3/2聚丙烯中空纤维,以甲苯为萃取溶剂,于室温、搅拌速度为720 r/min条件下在4.5 mL样品溶液中萃取20 min,萃取物在室温下经氮气流吹干后用流动相溶解进样。采用Baseline C18分离柱(4.6 mm×250 mm,5.0 μm),以甲醇-水(体积比为60∶40) 为流动相,流速为1.0 mL/min。呋喃丹、西维因、异丙威和乙霉威的检测波长分别为200,223,200和208 nm。该方法对4种氨基甲酸酯类农药的富集倍数均大于45倍;4种氨基甲酸酯类农药在10~100 μg/L质量浓度范围内,其质量浓度与峰面积之间有良好的线性关系,相关系数均大于0.99;呋喃丹、西维因、异丙威和乙霉威的检出限(S/N=3)分别为5,1,5和3 μg/L;实际水样中的加标回收率为82.0%~102.2%,相对标准偏差为2.0%~6.2%(n=6)。  相似文献   

12.
Ergosta-4,6,8(14),22-tetraen-3-one (ergone) from many medicinal plants has been demonstrated to possess a variety of pharmacological activities in vivo and in vitro, including cytotoxic, diuretic and immunosuppressive activity. Metabolism and pharmacokinetic studies on rat were conducted for ergone. Rapid resolution liquid chromatography with atmospheric pressure chemical ionization tandem multi-stage mass spectrometry (RRLC-APCI-MSn) and high-performance liquid chromatography with fluorescence detection (HPLC-FLD) methods were applied for the identification and quantification of ergone and its metabolite from rat plasma, faeces and urine. A metabolite was identified by RRLC-DAD-APCI-MSn: 22,23-epoxy-ergosta-4,6,8(14)-triaen-3-one (epoxyergone). The concentrations of the analyte with its metabolites were determined by HPLC-FLD at excitation wavelength of 370 nm and emission wavelength of 485 nm. The samples were deproteinized with methanol after addition of camptothecin as internal standard (IS). The analysis was performed on a Diamonsil C18 column (150 mm × 4.6 mm × 5 μm) with a mobile phase gradient consisting of methanol and water at a flow rate of 1 mL min−1. The assay was linear over the concentration range of 42-1500, 36-7500 and 42-1500 ng mL−1 for plasma, faecal homogenate and urine respectively. The absolute recoveries were found to be 97.0 ± 1.2%, 98.1 ± 0.7% and 96.6 ± 1.8% for plasma, faecal homogenate and urine respectively. The intra-day and inter-day relative standard deviations (RSD) were less than 10%. The previous HPLC-MS/MS method is not affordable for most laboratories because of the specialty requirement and high equipment cost. However, the HPLC-FLD method is economic and operating simply for quantitative determination of ergone and its metabolite in rat plasma, faeces and urine. In addition, liquid chromatography coupled with ion trap multi-stage mass spectrometry is becoming a useful technique for ergone metabolite identification.  相似文献   

13.
A rapid and sensitive method was developed for the screening, quantification and confirmation of ethyl glucuronide (EG) and ethyl sulfate (ES) as biomarkers for alcohol administration to racehorses using liquid chromatography coupled on-line with triple quadrupole tandem mass spectrometry. Urine sample aliquots (0.1 mL) were pre-treated by protein precipitation. Separation of EG and ES was achieved on an Ultra PFP column. Isocratic elution with a flush step was performed using 0.1% formic acid in water (A) and 0.1% formic acid in acetonitrile (B). Analysis was performed by negative electrospray ionization in multiple reaction monitoring mode. The retention times for EG and ES were 1.7 +/- 0.30 and 3.4 +/- 0.30 min, respectively. The internal standard used was d(5)-ethyl glucuronide with a retention time of 1.7 +/- 0.30 min. The entire separation was completed in <5 min. The limit of detection (LOD) and of quantification (LOQ) for both analytes were 100 ng/mL (S/N > or =3) and 500 ng/mL, respectively. The limit of confirmations (LOC) for EG and ES were 500 ng/mL and 1.0 microg/mL, respectively. The assay was linear over a concentration range of 0.5-100 microg/mL (r(2) > 0.995). Intra- and inter-day accuracy and precision were less than 15%. The analytes were stable in urine for 24 h at room temperature, 10 days at 4 degrees C and 21 days at -20 degrees C and -70 degrees C. Ion suppression or enhancement due to matrix effect was negligible. The measurement uncertainty was <14% for EG and <25% for ES. This method was successfully used for the quantification of EG and ES in urine samples following alcohol administration to research horses and for screening and confirmation of EG and ES in urine samples obtained from racehorses post-competition. The method is simple, rapid, inexpensive, and reliably reproducible.  相似文献   

14.
Seven phenothiazine derivatives, perazine, perphenazine, prochlorperazine, propericiazine, thioproperazine, trifluoperazine, and flupentixol, have been found to be extractable from human plasma and urine samples using disk solid-phase extraction (SPE) with an Empore C18 cartridge. Human plasma and urine (1 mL each) containing the 7 phenothiazine derivatives were mixed with 2 mL of 0.1M NaOH and 7 mL distilled water and then poured into the disk SPE cartridges. The drugs were eluted with 1 mL chloroform- acetonitrile (8 + 2) and determined by liquid chromatography with ammonium formate/formic acid-acetonitrile gradient elution. The detection was performed by ultraviolet absorption at 250 nm. The separation of the 7 phenothiazine derivatives from each other and from impurities was generally satisfactory using a SymmetryShield RP8 column (150 x 2.1 mm id, 3.5 microm particle size). The recoveries of the 7 phenothiazine derivatives spiked into plasma and urine samples were 64.0-89.9% and 65.1-92.1%, respectively. Regression equations for the 7 phenothiazine derivatives showed excellent linearity, with detection limits of 0.021-0.30 microg/mL for plasma and 0.017-0.30 microg/mL for urine. The within-day and day-to-day coefficients of variation for both samples were commonly below 9.0 and 14.9%, respectively.  相似文献   

15.
The simultaneous determination of Tarabine PFS and Adriblastine by two independent techniques, viz. micellar electrokinetic chromatography (MEKC) and high performance liquid chromatography (HPLC), has been studied. For MEKC analysis, separations and identifications were accomplished using uncoated fused-silica capillaries and injections were performed in the hydrodynamic mode. The running buffer consisted of 0.05 M borate/phosphate pH 8.70, with 0.10 M SDS at an operating voltage of 15.0 kV and the temperature held at 25.0 degrees C. Under these conditions, the migration times of Tarabine PFS and Adriblastine were 2.70 and 6.40 min, respectively. Calibration curves were established for 0.010-0.300 microg/mL (r = 0.99) Tarabine PFS and 8.000-120.0 microg/mL (r = 0.99) Adriblastine. The limit of detection (LOD) was estimated and found to be 0.003 and 3.000 microg/mL of Tarabine PFS and Adriblastine, respectively. The limit of quantitation (LOQ) was found to be 0.009 and 8.000 microg/mL of Tarabine PFS and Adriblastine, respectively. For HPLC analysis, separations and determinations were performed on teicoplanin stationary phase with reversed mobile phase containing methanol:buffer pH 4.05 (20.0:80.0%, v/v) at 285 nm. Calibration curves were established for 3.000-90.00 microg/mL (r = 0.99) Tarabine PFS and for 10.00-120.0 microg/mL (r = 0.99) Adriblastine. LOD and LOQ were estimated and found to be 0.950 and 2.050 microg/mL of Tarabine PFS and 3.130 and 9.250 microg/mL of Adriblastine, respectively. Both MEKC and HPLC methods were applied for the simultaneous determination of analytes in urine samples. It was found that 8.00-10.0% (Tarabine PFS) and 13.0-15.0% (Adriblastine) of the injected dose was recovered in urine samples with 99.5-102% recovery.  相似文献   

16.
It is established that bovine urine can result positive for boldenone and androstadienedione in consequence of faecal contamination. The simple transfer of steroids to urine is one minor aspect of faecal contamination. A high de novo production of steroids in faeces after deposition and in faeces-contaminated urine is almost certainly due to microbial activity, although the precursor compounds and transformations leading to the presence of these illegal steroids are unclear. We developed a simple in vitro method - incubation of faecal matter suspended in 0.9% saline - to induce steroid transformations in faeces, and analyzed the products by liquid chromatography/tandem mass spectrometry, without the need for prior extraction. Norethandrolone was the internal standard. The linearity (R(2): 0.987-0.999), sensitivity (LODs: 0.3 to 1.0 ng/mL; LOQs: 1.0 to 3.0 ng/mL), precision (intra-day CVs: 2.6-8.2; inter-day CVs: 4.5-11.5) and accuracy (percentage recovery: 89-120%) were calculated for the studied steroids. Androstenedione, androstadienedione, alpha- and beta-boldenone, testosterone and epitestosterone transformations were investigated. Mutual interconversion of steroids was observed, although 17beta-hydroxy steroids had low stability compared with 17alpha-hydroxy and 17-keto steroids. The results suggest that this simple in vitro system may be an effective way of studying hormone transformations in faeces and, after analogue studies, in faeces-contaminated urine.  相似文献   

17.
A high-performance liquid chromatography (HPLC) method with mass spectrometric detection is described for determination of arecoline in newborn meconium, urine and cord serum, using pilocarpine as internal standard. The analytes were extracted from neonatal biological matrices with chloroform/isopropanol (95:5, v/v) at alkaline pH. Extracts were analyzed by HPLC coupled to an electrospray (ESI) interface and a quadrupole mass spectrometer. Chromatography was performed on a C(8) reversed-phase column using 10 mM ammonium acetate (pH 4.3)/acetonitrile (90:10, v/v) as mobile phase. The mass spectrometer was operated in selected ion monitoring mode. The method was validated over the concentration range 0.005-1.00 micro g/g meconium, 0.004-1.00 micro g/mL cord serum and 0.001-1.00 micro /mL urine. Mean recoveries ranged between 86.5 and 90.7% for arecoline in the different biological matrices, with precision always better than 10%. The quantification limits of arecoline were 0.005 micro g/g meconium, 0.004 micro g/mL cord serum, and 0.001 micro g/mL urine. The method was applied to the analysis of neonatal biological matrices to assess eventual fetal exposition to arecoline. Two newborns from Asian mothers who declared areca nut consumption presented arecoline in meconium with concentrations in the range 0.006-0.008 micro g/g; also the urine from one neonate tested positive for the drug.  相似文献   

18.
Novel polymer monolith microextraction (PMME) using a poly(methacrylic acid-ethylene glycol dimethacrylate) (poly(MAA-EGDMA)) monolith in conjunction with capillary zone electrophoresis (CZE) was developed for the determination of several angiotensin II receptor antagonists (ARA-IIs) in human urine. The extraction device consisted of a regular plastic syringe (1 mL), a poly(MAA-EGDMA) monolithic capillary (2 cm x 530 microm I.D.) and a plastic pinhead connecting the former two components seamlessly. The extraction was achieved by driving the sample solution through the monolithic capillary tube using a syringe infusion pump, and for the desorption step, an aliquot of organic solvent was injected via the monolithic capillary and collected into a vial for subsequent analysis by CZE. The best separation was realized at 25 kV using a buffer that consisted of 50% acetonitrile and 50% buffer solution (v/v) containing 10 mM disodium hydrogenphosphate (adjusted to pH 2.3 with 1M hydrochloric acid). The method was successfully applied to the determination of telmisartan (T), irbesartan (I) and losartan (L) in urine samples with candesartan (C) as internal standard, yielding the detection limit of 15-20 ng/mL. Close correlation coefficients (R>0.999) and excellent method reproducibility were obtained for all the analytes over a linear range of 0.08-3 microg/mL.  相似文献   

19.
This paper describes a convenient method for the separation and simultaneous determination of six anti-diabetic drugs viz., glibenclamide (GLB), gliclazide (GLC), glipizide (GLZ), pioglitazone (PGL), repaglinide (RPG) and rosiglitazone (RGL) in pharmaceutical formulations. Also, the assay has been shown applied to support quantification of the six anti-diabetic drugs in human plasma. The analytes were either injected directly onto the column after suitable dilution (pharmaceutical formulation analysis) or a simple extraction procedure, using acetonitrile, from human plasma spiked with anti-diabetic drugs and internal standard (IS). Ternary gradient elution at a flow rate of 1 mL/min was employed on an Intertisl ODS 3V column (4.6 x 250 mm, 5 microm) at ambient temperature. The mobile phase consisted of 0.01 m formic acid (pH 3.0), acetonitrile, Milli Q water and methanol. Celecoxib was used as an IS. The six anti-diabetic drugs were monitored at a wavelength of 260 nm. The nominal retention times of RGL, PGL, GLZ, GLC, GLB, IS and RGL were 11.4, 13.3, 14.8, 17.6, 20.78, 22.1 and 25.4 min, respectively. The assay developed for formulation analysis was found to be accurate and precise. The calibration curves ranged from 0.1 to 100 microg/mL for all analytes with the exception of GLB, where the range was 0.3-100 microg/mL. The plasma assay was validated for parameters such as specificity, accuracy and extraction recovery. The proposed method is simple, selective and can be extended for routine analysis of anti-diabetics in pharmaceutical preparations and in biological matrices.  相似文献   

20.
Beclomethasone dipropionate (BDP) is a potent pro-drug to beclomethasone (BOH) and is used in the treatment of chronic and acute respiratory disorders in the horse. The therapeutic dose of BDP (325 microg per horse) by inhalation results in very low plasma and urinary concentrations of BDP and its metabolites that pose a challenge to detection and confirmation by equine forensic laboratories. To solve this problem, a method involving the use of a liquid chromatography coupled with tandem mass spectrometry (LC/MS/MS) was developed for the detection, confirmation and quantification of the analytes in equine samples. Ammonium formate or acetate buffer added to LC mobile phase favored the formation of [M + H](+) ions from BDP and its metabolites, whereas formic acid led to the formation of sodium and potassium adduct ions ([M + Na](+), [M + K](+)) together with [M + H](+) ions. Acetonitrile, on the other hand, favored the formation of abundant solvent adduct ions [M + H + CH(3)CN](+) with the analytes under electrospray ionization (ESI) and atmospheric pressure chemical ionization conditions. In contrast, methanol formed much less solvent adduct ions than acetonitrile. The solvent adduct ions were thermally stable and could not be completely desolvated under the experimental conditions, but they were very fragile to collision-induced dissociation (CID). Interestingly, these solvent adduct ions were observed on a triple-quadrupole mass spectrometry but not on an ion trap instrument where helium used as a damping gas in the ion trap might cause the solvent adduct ions desolvated by collision. By CID studies on the [M + H](+) ions of BDP and its metabolites, their fragmentation paths were proposed. In equine plasma at ambient temperature over 2 h, BDP and B21P were hydrolyzed in part to B17P and BOH, respectively, but B17P was not hydrolyzed. Sodium fluoride added to equine plasma inhibited the hydrolysis of BDP and B21P. The matrix effect in ESI was evaluated in equine plasma and urine samples. The method involved the extraction of BDP and its metabolites from equine plasma and urine samples by methyl tert-butyl ether, resolution on a C(8) column with a mobile phase gradient consisting of methanol and ammonium formate (2 mmol l(-1), pH 3.4) and multiple reaction monitoring for the analytes on a triple-quadrupole mass spectrometer. The detection limit was 13 pg ml(-1) for BDP and B17P, 25 pg ml(-1) for BOH and 50 pg ml(-1) for B21P in plasma and 25 pg ml(-1) for BOH in urine. The method was successfully applied to the analysis of equine plasma and urine samples for the analytes following administration of BDP to horses by inhalation. B17P, the major and active metabolite of BDP, was detected and quantified in equine plasma up to 4 h post-administration by inhalation of a very low therapeutic dose (325 microg per horse) of BDP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号