首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 39 毫秒
1.
We report a new method in which spontaneous self‐assembly is employed to synthesize monodisperse polymer nanoparticles with controlled size (<50 nm), shape, tunable functionality, and enhanced solvent and thermal stability. Cooperative noncovalent interactions, such as hydrogen bonding and aromatic π–π stacking, assist self‐assembly of amphiphilic macromolecules (polystyrene‐block‐polyvinylpyridine, PS? PVP) and structure directing agents (SDAs) to form both spherical and anisotropic solid polymer nanoparticles with SDAs residing in the particle core surrounded by the polymers. Through detailed investigations by scanning electron microscopy and transmission electron microscopy (TEM), we have rationalized nanoparticle morphology evolution and dependence on factors such as SDA concentration and PVP size. By keeping the PS chain size constant, the particle morphology progresses from continuous films to spherical particles, and on to cylindrical nanowires or rods with increasing the PVP chain size. The final nanoparticles are very stable and can be redispersed in common solvents to form homogenous solutions and thin films of ordered nanoparticle arrays through solvent evaporation processes. These nanoparticles exhibit tunable fluorescent colors (or emissions) depending on the choices of the central SDAs. Our method is simple and general without requiring complicated synthetic chemistry, stabilizing surfactants, or annealing procedures (e.g., temperature or solvent annealing), making scalable synthesis feasible.  相似文献   

2.
The reversible in situ formation of a self‐assembly building block (naphthalenediimide (NDI)–dipeptide conjugate) by enzymatic condensation of NDI‐functionalized tyrosine ( NDI‐Y ) and phenylalanine‐amide ( F‐NH2 ) to form NDI‐YF‐NH2 is described. This coupled biocatalytic condensation/assembly approach is thermodynamically driven and gives rise to nanostructures with optimized supramolecular interactions as evidenced by substantial aggregation induced emission upon assembly. Furthermore, in the presence of di‐hydroxy/alkoxy naphthalene donors, efficient charge‐transfer complexes are produced. The dynamic formation of NDI‐YF‐NH2 and electronic and H‐bonding interactions are analyzed and characterized by different methods. Microscopy (TEM and AFM) and rheology are used to characterize the formed nanostructures. Dynamic nanostructures, whose formation and function are driven by free‐energy minimization, are inherently self‐healing and provide opportunities for the development of aqueous adaptive nanotechnology.  相似文献   

3.
Thermo‐sensitive amphiphilic copolymers, PVCL‐PTrpAMT and PVCL‐PVP‐PTrpAMT of hydrophilic N‐vinylcaprolactam (VCL), N‐vinylpyrrolidone (NVP), and hydrophobic Nt‐Boc‐tryptophanamido‐N′‐methacryl thioureas (TrpAMT) monomers, were synthesized and characterized by 1H NMR, UV‐spectroscopy, and GPC‐MALLS. The cloud point (CP) measurement showed that hydrophobic PTrpAMT and hydrophilic PVP segments significantly altered the phase transition temperature of PVCL with comparable molecular weight in aqueous solution. The CP of PVP‐PTrpAMT solution was 38.0°C, lower by 5.0°C than that of unmodified PVCL. In the presence of phosphate buffer saline (PBS), the CP value of the PVCL polymer decreased by ~2.0°C in comparison to that of the aqueous solution. Fluorescent spectroscopy and TEM studies revealed that PVCL‐PTrpAMT and PVCL‐PVP‐PTrpAMT self‐assembled into the spherical micelles, 30–70 nm in diameter, at concentrations over their CMCs in an aqueous solution. Cytotoxicity tests demonstrated that the PVCL copolymers were not harmful to cell viability, which may favor the use of the copolymers as potential thermo‐sensitive polymers in pharmaceutical applications. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
Poly(ethylene glycol) (PEG) was modified with aniline groups at both the end, and then PEG‐PANI rod‐coil block polymers have been synthesized by polymerization of the aniline with the aniline‐modified PEG. FTIR, NMR, and elemental analysis provided the chemical strucutre of the as‐prepared polymers. The achiral rod‐coil copolymer could form different superstructures by means of self‐assembly when adding diethyl ether into its THF solution and the length of PANI segments is a key factor to the superstructures. AFM measurements revealed that they form spring‐like helical superstructures from the short PANI‐containing copolymers while these form fibrous helical superstructures from the longer PANI‐containing copolymer. A possible mechanism of the helical superstructures is suggested in this article and the driving force is believed the π–π stacking of the rigid segment of the copolymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 12–20, 2008  相似文献   

5.
Poly(N‐vinyl pyrrolidone)‐block‐poly(N‐vinyl carbazole)‐block‐poly(N‐vinyl pyrrolidone) (PVP‐b‐PVK‐b‐PVP) triblock copolymers were synthesized via sequential reversible addition‐fragmentation chain transfer/macromolecular design via the interchange of xanthate (RAFT/MADIX) process. First, 1,4‐phenylenebis(methylene)bis(ethyl xanthate) was used as a chain transfer agent to mediate the radical polymerization of N‐vinyl carbazole (NVK). It was found that the polymerization was in a controlled and living manner. Second, one of α,ω‐dixanthate‐terminated PVKs was used as the macromolecular chain transfer agent to mediate the radical polymerization of N‐vinyl pyrrolidone (NVP) to obtain the triblock copolymers with various lengths of PVP blocks. Transmission electron microscopy (TEM) showed that the triblock copolymers in bulks were microphase‐separated and that PVK blocks were self‐organized into cylindrical microdomains, depending on the lengths of PVP blocks. In aqueous solutions, all these triblock copolymers can self‐assemble into the spherical micelles. The critical micelle concentrations of the triblock copolymers were determined without external adding fluorescence probe. By analyzing the change in fluorescence intensity as functions of the concentration, it was judged that the onset of micellization occurred at the concentration while the FL intensity began negatively to deviate from the initial linear increase with the concentration. Fluorescence spectroscopy indicates that the self‐assembled nanoobjects of the PVP‐b‐PVK‐b‐PVP triblock copolymers in water were capable of emitting blue/or purple fluorescence under the irradiation of ultraviolet light. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1852–1863  相似文献   

6.
Self‐assembly of pyrene butyric acid (PBA) and 2,4,7‐trinitro‐9H‐fluoren‐9‐one (TNF) directed by a pyridine‐linked cholesterol unit resulted in the formation of a conducting material (1.9472×10?4 S Cm?1) due to the formation of 1 D nanofibers. X‐ray diffraction, IR, and atomic force microscopic (AFM) techniques were used to establish the mechanism of the self‐assembly of the multicomponent gels. Results indicate efficient charge transfer in the 1 D nanofibers, assisted by hydrogen bonding.  相似文献   

7.
N‐[(Uracil‐5‐yl)methyl]urea is reported as a minimalistic low‐molecular‐weight hydrogelator (LMWHG). The unusual phosphate‐induced assembly of this compound has been thoroughly investigated by IR, UV/Vis, and NMR spectroscopy, electron microscopy, and rheological experiments. This rare example of an anion‐triggered urea‐based LMWHG is the first example of a pyrimidine‐ and urea‐containing molecule that can be forced into self‐assembly in aqueous solution without additional aromatic or lipophilic groups. The gelator/phosphate ratio within the hydrogel was successfully determined by 31P MAS NMR spectroscopy. The hydrogel exhibits a very fast and repeatable self‐healing property, and remarkable G′ values. The viscoelastic properties of the hydrogel can easily be tuned by variation of the phosphate ratio.  相似文献   

8.
The hydrophilic monomer acrylamide (AM) and hydrophobic monomer styrene (St) have been directly copolymerized in a surfactant‐free aqueous emulsion with the assistance of powerful ultrasound. Fourier Transform Infrared spectrocopy (FT‐IR), nuclear magnetic resonance (NMR), and differential scanning calorimetry (DSC) measurements revealed that copolymers of AM and St were obtained. Elemental analysis was used to calculate the composition of the copolymer. Size exclusion chromatography (SEC) measurement showed that the molecular weight (Mw) of the copolymer is 1.86 × 105 g/mol and the polydispersity index (PDI( = 2.31. The self‐assembly behavior in different solvents was investigated utilizing laser light scattering (LLS), atomic force microscopy (AFM), and transmission electron microscopy (TEM); the copolymer film showed amphiphilicity, as measured by contact angle goniometry. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

9.
A new set of amphiphilic tertiary amine N‐oxides has been prepared and their self‐assembly properties observed in aqueous solution by tensiometry, dynamic and static light scattering. X‐ray crystallographic analysis of parent amines and sulfoxide congeners indicates the formation of hydrogen‐bonded dimers as the primary assembly unit for formation of vesicles in preference to the compact micelles typical of lauryl dimethylamine N‐oxide (LDAO). 6‐Benzyloxy‐N,N′‐bis(5‐diethylaminopentylamine oxide)[1,3,5]triazine‐2,4‐diamine forms a 1 μm vesicle observed to entrap fluorescein. The [1,3,5]triazine core thus allows variation of the new self‐assembled structures from nano‐ to micrometre length scales.  相似文献   

10.
The self‐assembly of a novel double hydrophilic block copolymer in water without the application of external triggers is described, namely pullulan‐b‐poly(2‐ethyl‐2‐oxazoline) (Pull‐b‐PEtOx). The biomacromolecules, Pull (8–38 kg mol?1), is modified and conjugated to biocompatible PEtOx (22 kg mol?1) via modular conjugation. Moreover, the molecular weight of the Pull blocks are varied to investigate the effect of molecular weight on the self‐assembly behavior. Spherical particles with sizes between 300 and 500 nm are formed in diluted aqueous solution (0.1–1.0 wt %) as observed via dynamic light scattering and static light scattering. Additionally, cryo scanning electron microscopy and laser scanning confocal microscopy are performed to support the finding from light scattering. The block ratio study shows an optimum ratio of Pull and PEtOx of 0.4/0.6 for self‐assembly in water in the concentration range of 0.1–1.0 wt %. At higher concentrations of 20 wt %, vesicular structures with sizes above 1 µm can be observed via optical microscopy. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55 , 3757–3766  相似文献   

11.
An efficient type of container for anticorrosion coating based on polyaniline (PANI) modified mesoporous silica (pS) sphere has been first prepared via in‐situ polymerization and surface‐protected etching. The PANI‐modified containers not only show higher concentration of loaded inhibitor than pS, but also protect steel well because of the PANI. The coating with 1H‐benzotriazole (BTA) loaded containers shows significant anticorrosion property because of the release of BTA from containers. The structure and morphology of container are characterized by FTIR, XRD, SEM and TEM. The release of BTA from pS and PANI‐modified containers is determined by UV in water. The possible self‐healing anticorrosion performances are evaluated by EIS and polarization curves which indicate that the coating including BTA‐loaded containers performs best. The strategy of modifying pS by PANI is effective and successful. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
Designing a lipopeptide (LP) vaccine with a specific asymmetric arrangement of epitopes may result in an improved display of antigens, increasing host‐cell recognition and immunogenicity. This study aimed to synthesise and characterise the physicochemical properties of a library of asymmetric LP‐based vaccine candidates that contained multiple CD4+ and CD8+ T‐cell epitopes from the model protein antigen, ovalbumin. These fully synthetic vaccine candidates were prepared by microwave‐assisted solid phase peptide synthesis. The C12 or C16 lipoamino acids were coupled to the N or C terminus of the OVA CD4 peptide epitope. The OVA CD4 LPs and OVA CD8 peptide constructs were then conjugated using azide–alkyne Huisgen cycloaddition to give multivalent synthetic vaccines. Physiochemical characterisation of these vaccines showed a tendency to self‐assemble in aqueous media. Changes in lipid length and position induced self‐assembly with significant changes to their morphology and secondary structure as shown by transmission electron microscopy and circular dichroism.  相似文献   

13.
Two routes have been developed inorder to prepare an inclusion complex of polyaniline (PANI) and β‐cyclodextrin (βCyD). The first route was to in situ polymerize N‐phenyl‐1,4‐phenylenediamine (PPD) which was encapsulated in βCyD in advance. The formation of an inclusion complex was confirmed by UV‐vis, circular dichroism (CD), and NMR spectra. It was found that the synthesized complex was readily dissolved in a range of solvents due to the solubility of βCyD. In these solvents, PANI was well encapsulated by βCyD with some conformation change in the chain of PANI, which was proved by the CD spectra of PANI. The second route involved preparing the inclusion complex by post‐encapsulation of PANI emeraldine base (EB) into βCyD in aqueous solution at room temperature. The encapsulation of EB into βCyD was confirmed by FT‐IR and UV‐vis spectra. The band shift in UV‐vis spectra indicated that the inclusion complexation was a gradual process, and the change in the chain conformation of PANI was also observed after it was encapsulated into βCyD. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
Summary: Supramolecular self‐assembly of poly(methyl methacrylate)‐grafted multiwalled carbon nanotubes (MWNT‐g‐PMMA) was reported herein. The MWNT‐g‐PMMA (85 wt.‐% PMMA) dispersed in tetrahydrofuran could self‐assemble into suprastructures on surfaces such as gold, mica, silicon, quartz, or carbon films. With decreasing concentration of the MWNT‐g‐PMMA from 3 to 0.1 mg · mL−1, the assembled structures changed from cellular and basketwork‐like forms to multilayer cellular networks and individual needles. SEM, AFM, and TEM measurements confirmed the morphology of the assembled suprastructures, and revealed the assembly mechanism. Phase separation during evaporation of the solvent drives the MWNT‐g‐PMMA nanohybrids to assemble and form the suprastructures, and the rigid MWNTs stabilize the structures.

SEM images of self‐assembled suprastructures of basketwork (a), cellular network (b), and needles (c) from the THF solution of the PMMA‐grafted MWNTs on gold surface.  相似文献   


15.
The construction of an n–p heterojunction through the self‐assembly of a dyad based on tetraphenylporphyrin (TPP) and 1,4,5,8‐naphthalenedimide (NDI) ( 1 ) is described. Proton transfer from the lysine head group of 1 to the porphyrin ring occurs concomitantly with self‐assembly into 1D nanorods in CHCl3. TEM and AFM studies showed that the nanorods are formed by the lateral and vertical fusion of multilameller vesicles into networks and hollow ribbons, respectively. These intermediate structures transitioned to nanorods over the course of 4–6 days. Time‐resolved spectroscopy revealed that photoinduced charge separation occurs with rate constants that depend on the nature of the aggregation.  相似文献   

16.
The self‐assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra‐ to nanofiltration and decrease the pore size of self‐assembled block copolymer membranes to below 5 nm without post‐treatment. It is now reported that the self‐assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol?1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.  相似文献   

17.
4‐{n‐[4‐(4‐Nitrophenylazo)phenyloxy]alkyl}aminobenzene sulfonic acid (Cn‐ABSA, where n = 2, 4, 6, 8, or 10) as a novel dopant for conducting polymers of polyaniline (PANI) was designed and synthesized. The molecular structure of Cn‐ABSA was characterized with 1H NMR, Fourier transform infrared, and secondary‐ion mass spectrometry. Nanostructures (nanotubes or nanorods) of PANI–(Cn‐ABSA) were successfully synthesized with a self‐assembly process in the presence of Cn‐ABSA as the dopant. The morphology (shape and size) and conductivity of the resulting nanostructures strongly depended on the number of alkyl groups (n) and, in particular, the addition of water before polymerization. The formed micelles of aniline/Cn‐ABSA/water were proposed to be templatelike in forming PANI–(Cn‐ABSA) nanostructures on the basis of the emulsion properties measured by dynamic light scattering. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3485–3497, 2001  相似文献   

18.
A polypseudorotaxane (PPR) comprising γ‐cyclodextrin (γ‐CD) as host molecules and poly(N‐isopropylacrylamide) (PNIPAM) as a guest polymer is prepared via self‐assembly in aqueous solution. Due to the bulky pendant isopropylamide group, PNIPAM exhibits size‐selectivity toward self‐assembly with α‐, β‐, and γ‐CDs. It can fit into the cavity of γ‐CD to give rise to a PPR, but cannot pass through α‐CD and β‐CD under the same conditions. The ratio of the number of γ‐CD molecules to entrapped NIPAM repeat units is kept at 1:2.2 or 1:2.4, determined by 1H NMR spectroscopy and TGA analysis, respectively, indicating that there are more than 2 but less than 3 NIPAM repeat units included by one γ‐CD molecule. This finding opens new avenues to PPR‐based supramolecular polymers to be used as solid, stimuli‐responsive materials.  相似文献   

19.
Understanding the crystallization of organic molecules is a long‐standing challenge. Herein, a mechanistic study on the self‐assembly of crystalline arrays in aqueous solution is presented. The crystalline arrays are assembled from perylene diimide (PDI) amphiphiles bearing a chiral N‐acetyltyrosine side group connected to the PDI aromatic core. A kinetic study of the crystallization process was performed using circular dichroism spectroscopy combined with time‐resolved cryogenic transmission electron microscopy (cryo‐TEM) imaging of key points along the reaction coordinate, and molecular dynamics simulation of the initial stages of the assembly. The study reveals a complex self‐assembly process starting from the formation of amorphous aggregates that are transformed into crystalline material through a nucleation–growth process. Activation parameters indicate the key role of desolvation along the assembly pathway. The insights from the kinetic study correlate well with the structural data from cryo‐TEM imaging. Overall, the study reveals four stages of crystalline self‐assembly: 1) collapse into amorphous aggregates; 2) nucleation as partial ordering; 3) crystal growth; and 4) fusion of smaller crystalline aggregates into large crystals. These studies indicate that the assembly process proceeds according to a two‐step crystallization model, whereby initially formed amorphous material is reorganized into an ordered system. This process follows Ostwald’s rule of stages, evolving through a series of intermediate phases prior to forming the final structure, thus providing an insight into the crystalline self‐assembly process in aqueous medium.  相似文献   

20.
Here, we present the one‐step synthesis of 2‐(m‐difluorophenyl)‐2‐oxazoline and its use as a monomer for microwave‐assisted statistical cationic ring‐opening copolymerizations (CROP). Well‐defined amphiphilic gradient copolymers, as evidenced by the polymerization kinetics, were prepared using 2‐ethyl‐2‐oxazoline as comonomer and methyl tosylate as initiator in nitromethane at 140 °C. The resulting gradient copolymers (DP = 60 and 100) were characterized by means of size exclusion chromatography and 1H NMR spectroscopy. In the second part, we focus on a detailed study of the self‐assembly of the copolymers in aqueous solution using atomic force microscopy and dynamic light scattering. Both methods revealed the self‐assembly of the gradient copolymers into spherical micelles. To quantify the influence of the fluorine atoms and the monomer distribution on the self‐assembly, a comparative study with gradient copolymers of 2‐phenyl‐2‐oxazoline and 2‐ethyl‐2‐oxazoline was performed. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 5859–5868, 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号