首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, first, we consider novel parameterized identities for the left and right part of the (p,q)-analogue of Hermite–Hadamard inequality. Second, using these new parameterized identities, we give new parameterized (p,q)-trapezoid and parameterized (p,q)-midpoint type integral inequalities via η-quasiconvex function. By changing values of parameter μ[0,1], some new special cases from the main results are obtained and some known results are recaptured as well. Finally, at the end, an application to special means is given as well. This new research has the potential to establish new boundaries in comparative literature and some well-known implications. From an application perspective, the proposed research on the η-quasiconvex function has interesting results that illustrate the applicability and superiority of the results obtained.  相似文献   

2.
In this investigation, for convex functions, some new (p,q)–Hermite–Hadamard-type inequalities using the notions of (p,q)π2 derivative and (p,q)π2 integral are obtained. Furthermore, for (p,q)π2-differentiable convex functions, some new (p,q) estimates for midpoint and trapezoidal-type inequalities using the notions of (p,q)π2 integral are offered. It is also shown that the newly proved results for p=1 and q1 can be converted into some existing results. Finally, we discuss how the special means can be used to address newly discovered inequalities.  相似文献   

3.
In this work, a finite element (FE) method is discussed for the 3D steady Navier–Stokes equations by using the finite element pair Xh×Mh. The method consists of transmitting the finite element solution (uh,ph) of the 3D steady Navier–Stokes equations into the finite element solution pairs (uhn,phn) based on the finite element space pair Xh×Mh of the 3D steady linearized Navier–Stokes equations by using the Stokes, Newton and Oseen iterative methods, where the finite element space pair Xh×Mh satisfies the discrete inf-sup condition in a 3D domain Ω. Here, we present the weak formulations of the FE method for solving the 3D steady Stokes, Newton and Oseen iterative equations, provide the existence and uniqueness of the FE solution (uhn,phn) of the 3D steady Stokes, Newton and Oseen iterative equations, and deduce the convergence with respect to (σ,h) of the FE solution (uhn,phn) to the exact solution (u,p) of the 3D steady Navier–Stokes equations in the H1L2 norm. Finally, we also give the convergence order with respect to (σ,h) of the FE velocity uhn to the exact velocity u of the 3D steady Navier–Stokes equations in the L2 norm.  相似文献   

4.
Based on Kedem–Katchalsky formalism, the model equation of the membrane potential (Δψs) generated in a membrane system was derived for the conditions of concentration polarization. In this system, a horizontally oriented electro-neutral biomembrane separates solutions of the same electrolytes at different concentrations. The consequence of concentration polarization is the creation, on both sides of the membrane, of concentration boundary layers. The basic equation of this model includes the unknown ratio of solution concentrations (Ci/Ce) at the membrane/concentration boundary layers. We present the calculation procedure (Ci/Ce) based on novel equations derived in the paper containing the transport parameters of the membrane (Lp, σ, and ω), solutions (ρ, ν), concentration boundary layer thicknesses (δl, δh), concentration Raileigh number (RC), concentration polarization factor (ζs), volume flux (Jv), mechanical pressure difference (ΔP), and ratio of known solution concentrations (Ch/Cl). From the resulting equation, Δψs was calculated for various combinations of the solution concentration ratio (Ch/Cl), the Rayleigh concentration number (RC), the concentration polarization coefficient (ζs), and the hydrostatic pressure difference (ΔP). Calculations were performed for a case where an aqueous NaCl solution with a fixed concentration of 1 mol m−3 (Cl) was on one side of the membrane and on the other side an aqueous NaCl solution with a concentration between 1 and 15 mol m−3 (Ch). It is shown that (Δψs) depends on the value of one of the factors (i.e., ΔP, Ch/Cl, RC and ζs) at a fixed value of the other three.  相似文献   

5.
Detrended Fluctuation Analysis (DFA) has become a standard method to quantify the correlations and scaling properties of real-world complex time series. For a given scale of observation, DFA provides the function F(), which quantifies the fluctuations of the time series around the local trend, which is substracted (detrended). If the time series exhibits scaling properties, then F()α asymptotically, and the scaling exponent α is typically estimated as the slope of a linear fitting in the logF() vs. log() plot. In this way, α measures the strength of the correlations and characterizes the underlying dynamical system. However, in many cases, and especially in a physiological time series, the scaling behavior is different at short and long scales, resulting in logF() vs. log() plots with two different slopes, α1 at short scales and α2 at large scales of observation. These two exponents are usually associated with the existence of different mechanisms that work at distinct time scales acting on the underlying dynamical system. Here, however, and since the power-law behavior of F() is asymptotic, we question the use of α1 to characterize the correlations at short scales. To this end, we show first that, even for artificial time series with perfect scaling, i.e., with a single exponent α valid for all scales, DFA provides an α1 value that systematically overestimates the true exponent α. In addition, second, when artificial time series with two different scaling exponents at short and large scales are considered, the α1 value provided by DFA not only can severely underestimate or overestimate the true short-scale exponent, but also depends on the value of the large scale exponent. This behavior should prevent the use of α1 to describe the scaling properties at short scales: if DFA is used in two time series with the same scaling behavior at short scales but very different scaling properties at large scales, very different values of α1 will be obtained, although the short scale properties are identical. These artifacts may lead to wrong interpretations when analyzing real-world time series: on the one hand, for time series with truly perfect scaling, the spurious value of α1 could lead to wrongly thinking that there exists some specific mechanism acting only at short time scales in the dynamical system. On the other hand, for time series with true different scaling at short and large scales, the incorrect α1 value would not characterize properly the short scale behavior of the dynamical system.  相似文献   

6.
The family of cumulative paired ϕ-entropies offers a wide variety of ordinal dispersion measures, covering many well-known dispersion measures as a special case. After a comprehensive analysis of this family of entropies, we consider the corresponding sample versions and derive their asymptotic distributions for stationary ordinal time series data. Based on an investigation of their asymptotic bias, we propose a family of signed serial dependence measures, which can be understood as weighted types of Cohen’s κ, with the weights being related to the actual choice of ϕ. Again, the asymptotic distribution of the corresponding sample κϕ is derived and applied to test for serial dependence in ordinal time series. Using numerical computations and simulations, the practical relevance of the dispersion and dependence measures is investigated. We conclude with an environmental data example, where the novel ϕ-entropy-related measures are applied to an ordinal time series on the daily level of air quality.  相似文献   

7.
We study the viable Starobinsky f(R) dark energy model in spatially non-flat FLRW backgrounds, where f(R)=RλRch[1(1+R2/Rch2)1] with Rch and λ representing the characteristic curvature scale and model parameter, respectively. We modify CAMB and CosmoMC packages with the recent observational data to constrain Starobinsky f(R) gravity and the density parameter of curvature ΩK. In particular, we find the model and density parameters to be λ1<0.283 at 68% C.L. and ΩK=0.000990.0042+0.0044 at 95% C.L., respectively. The best χ2 fitting result shows that χf(R)2χΛCDM2, indicating that the viable f(R) gravity model is consistent with ΛCDM when ΩK is set as a free parameter. We also evaluate the values of AIC, BIC and DIC for the best fitting results of f(R) and ΛCDM models in the non-flat universe.  相似文献   

8.
The rich history of prime numbers includes great names such as Euclid, who first analytically studied the prime numbers and proved that there is an infinite number of them, Euler, who introduced the function ζ(s)n=1ns=pprime11ps, Gauss, who estimated the rate at which prime numbers increase, and Riemann, who extended ζ(s) to the complex plane z and conjectured that all nontrivial zeros are in the R(z)=1/2 axis. The nonadditive entropy Sq=kipilnq(1/pi)(qR;S1=SBGkipilnpi, where BG stands for Boltzmann-Gibbs) on which nonextensive statistical mechanics is based, involves the function lnqzz1q11q(ln1z=lnz). It is already known that this function paves the way for the emergence of a q-generalized algebra, using q-numbers defined as xqelnqx, which recover the number x for q=1. The q-prime numbers are then defined as the q-natural numbers nqelnqn(n=1,2,3,), where n is a prime number p=2,3,5,7, We show that, for any value of q, infinitely many q-prime numbers exist; for q1 they diverge for increasing prime number, whereas they converge for q>1; the standard prime numbers are recovered for q=1. For q1, we generalize the ζ(s) function as follows: ζq(s)ζ(s)q (sR). We show that this function appears to diverge at s=1+0, q. Also, we alternatively define, for q1, ζq(s)n=11nqs=1+12qs+ and ζq(s)pprime11pqs=112qs113qs115qs, which, for q<1, generically satisfy ζq(s)<ζq(s), in variance with the q=1 case, where of course ζ1(s)=ζ1(s).  相似文献   

9.
Recently, Savaré-Toscani proved that the Rényi entropy power of general probability densities solving the p-nonlinear heat equation in Rn is a concave function of time under certain conditions of three parameters n,p,μ , which extends Costa’s concavity inequality for Shannon’s entropy power to the Rényi entropy power. In this paper, we give a condition Φ(n,p,μ) of n,p,μ under which the concavity of the Rényi entropy power is valid. The condition Φ(n,p,μ) contains Savaré-Toscani’s condition as a special case and much more cases. Precisely, the points (n,p,μ) satisfying Savaré-Toscani’s condition consist of a two-dimensional subset of R3 , and the points satisfying the condition Φ(n,p,μ) consist a three-dimensional subset of R3 . Furthermore, Φ(n,p,μ) gives the necessary and sufficient condition in a certain sense. Finally, the conditions are obtained with a systematic approach.  相似文献   

10.
11.
Detection of faults at the incipient stage is critical to improving the availability and continuity of satellite services. The application of a local optimum projection vector and the Kullback–Leibler (KL) divergence can improve the detection rate of incipient faults. However, this suffers from the problem of high time complexity. We propose decomposing the KL divergence in the original optimization model and applying the property of the generalized Rayleigh quotient to reduce time complexity. Additionally, we establish two distribution models for subfunctions F1(w) and F3(w) to detect the slight anomalous behavior of the mean and covariance. The effectiveness of the proposed method was verified through a numerical simulation case and a real satellite fault case. The results demonstrate the advantages of low computational complexity and high sensitivity to incipient faults.  相似文献   

12.
Among various modifications of the permutation entropy defined as the Shannon entropy of the ordinal pattern distribution underlying a system, a variant based on Rényi entropies was considered in a few papers. This paper discusses the relatively new concept of Rényi permutation entropies in dependence of non-negative real number q parameterizing the family of Rényi entropies and providing the Shannon entropy for q=1. Its relationship to Kolmogorov–Sinai entropy and, for q=2, to the recently introduced symbolic correlation integral are touched.  相似文献   

13.
A hyperjerk system described by a single fourth-order ordinary differential equation of the form x=f(x,x¨,x˙,x) has been referred to as a snap system. A damping-tunable snap system, capable of an adjustable attractor dimension (DL) ranging from dissipative hyperchaos (DL<4) to conservative chaos (DL=4), is presented for the first time, in particular not only in a snap system, but also in a four-dimensional (4D) system. Such an attractor dimension is adjustable by nonlinear damping of a relatively simple quadratic function of the form Ax2, easily tunable by a single parameter A. The proposed snap system is practically implemented and verified by the reconfigurable circuits of field programmable analog arrays (FPAAs).  相似文献   

14.
15.
16.
We use an m-vicinity method to examine Ising models on hypercube lattices of high dimensions d3. This method is applicable for both short-range and long-range interactions. We introduce a small parameter, which determines whether the method can be used when calculating the free energy. When we account for interaction with the nearest neighbors only, the value of this parameter depends on the dimension of the lattice d. We obtain an expression for the critical temperature in terms of the interaction constants that is in a good agreement with the results of computer simulations. For d=5,6,7, our theoretical estimates match the numerical results both qualitatively and quantitatively. For d=3,4, our method is sufficiently accurate for the calculation of the critical temperatures; however, it predicts a finite jump of the heat capacity at the critical point. In the case of the three-dimensional lattice (d=3), this contradicts the commonly accepted ideas of the type of the singularity at the critical point. For the four-dimensional lattice (d=4), the character of the singularity is under current discussion. For the dimensions d=1, 2 the m-vicinity method is not applicable.  相似文献   

17.
We used the blast wave model with the Boltzmann–Gibbs statistics and analyzed the experimental data measured by the NA61/SHINE Collaboration in inelastic (INEL) proton–proton collisions at different rapidity slices at different center-of-mass energies. The particles used in this study were π+, π, K+, K, and p¯. We extracted the kinetic freeze-out temperature, transverse flow velocity, and kinetic freeze-out volume from the transverse momentum spectra of the particles. We observed that the kinetic freeze-out temperature is rapidity and energy dependent, while the transverse flow velocity does not depend on them. Furthermore, we observed that the kinetic freeze-out volume is energy dependent, but it remains constant with changing the rapidity. We also observed that all three parameters are mass dependent. In addition, with the increase of mass, the kinetic freeze-out temperature increases, and the transverse flow velocity, as well as kinetic freeze-out volume decrease.  相似文献   

18.
A complex fuzzy set is a vigorous framework to characterize novel machine learning algorithms. This set is more suitable and flexible compared to fuzzy sets, intuitionistic fuzzy sets, and bipolar fuzzy sets. On the aspects of complex fuzzy sets, we initiate the abstraction of (α,β)-complex fuzzy sets and then define α,β-complex fuzzy subgroups. Furthermore, we prove that every complex fuzzy subgroup is an (α,β)-complex fuzzy subgroup and define (α,β)-complex fuzzy normal subgroups of given group. We extend this ideology to define (α,β)-complex fuzzy cosets and analyze some of their algebraic characteristics. Furthermore, we prove that (α,β)-complex fuzzy normal subgroup is constant in the conjugate classes of group. We present an alternative conceptualization of (α,β)-complex fuzzy normal subgroup in the sense of the commutator of groups. We establish the (α,β)-complex fuzzy subgroup of the classical quotient group and show that the set of all (α,β)-complex fuzzy cosets of this specific complex fuzzy normal subgroup form a group. Additionally, we expound the index of α,β-complex fuzzy subgroups and investigate the (α,β)-complex fuzzification of Lagrange’s theorem analog to Lagrange’ theorem of classical group theory.  相似文献   

19.
A large family of new α-weighted group entropy functionals is defined and associated Fisher-like metrics are considered. All these notions are well-suited semi-Riemannian tools for the geometrization of entropy-related statistical models, where they may act as sensitive controlling invariants. The main result of the paper establishes a link between such a metric and a canonical one. A sufficient condition is found, in order that the two metrics be conformal (or homothetic). In particular, we recover a recent result, established for α=1 and for non-weighted relative group entropies. Our conformality condition is “universal”, in the sense that it does not depend on the group exponential.  相似文献   

20.
The aim of this paper is to show that α-limit sets in Lorenz maps do not have to be completely invariant. This highlights unexpected dynamical behavior in these maps, showing gaps existing in the literature. Similar result is obtained for unimodal maps on [0,1]. On the basis of provided examples, we also present how the performed study on the structure of α-limit sets is closely connected with the calculation of the topological entropy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号