首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Synthesis and Crystal Structure of K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4), and Na(HSO4)(H3PO4) Mixed hydrogen sulfate phosphates K2(HSO4)(H2PO4), K4(HSO4)3(H2PO4) and Na(HSO4)(H3PO4) were synthesized and characterized by X‐ray single crystal analysis. In case of K2(HSO4)(H2PO4) neutron powder diffraction was used additionally. For this compound an unknown supercell was found. According to X‐ray crystal structure analysis, the compounds have the following crystal data: K2(HSO4)(H2PO4) (T = 298 K), monoclinic, space group P 21/c, a = 11.150(4) Å, b = 7.371(2) Å, c = 9.436(3) Å, β = 92.29(3)°, V = 774.9(4) Å3, Z = 4, R1 = 0.039; K4(HSO4)3(H2PO4) (T = 298 K), triclinic, space group P 1, a = 7.217(8) Å, b = 7.521(9) Å, c = 7.574(8) Å, α = 71.52(1)°, β = 88.28(1)°, γ = 86.20(1)°, V = 389.1(8)Å3, Z = 1, R1 = 0.031; Na(HSO4)(H3PO4) (T = 298 K), monoclinic, space group P 21, a = 5.449(1) Å, b = 6.832(1) Å, c = 8.718(2) Å, β = 95.88(3)°, V = 322.8(1) Å3, Z = 2, R1 = 0,032. The metal atoms are coordinated by 8 or 9 oxygen atoms. The structure of K2(HSO4)(H2PO4) is characterized by hydrogen bonded chains of mixed HnS/PO4 tetrahedra. In the structure of K4(HSO4)3(H2PO4), there are dimers of HnS/PO4 tetrahedra, which are further connected to chains. Additional HSO4 tetrahedra are linked to these chains. In the structure of Na(HSO4)(H3PO4) the HSO4 tetrahedra and H3PO4 molecules form layers by hydrogen bonds.  相似文献   

2.
By adding piperazine to a hydrofluoric and phosphoric acid solution of Manganese(III) fluoride, the fluoride phosphate (pipzH2)[MnF2(HPO4)(H2O)](H2PO4) can be crystallized. Its structure is built by piperazinium(2+) cations, (H2PO4)? anions, and an anionic double‐chain of [HPO4] tetrahedra and [MnO3F2(H2O)] octahedra. The structure is triclinic, space group P , Z = 2, a = 622.97(4), b = 923.46(6), c = 1183.62(7) pm, α = 98.343(6)°, β = 100.747(7)°, γ = 107.642(5)°, R = 0.0289. It is worth noting that a ferrodistortive Jahn‐Teller order is observed with [MnO3F2(H2O)] octahedra strongly elongated along the F–Mn–OH2 axes perpendicular to the chain plane. The structure is stabilized by very strong hydrogen bonds.  相似文献   

3.
Pseudo‐Isomerism by Different Jahn‐Teller Ordering: Crystal Structures of the Hemihydrate and the Monohydrate of (pyH)[MnF(H2PO4)(HPO4)] With pyridinium counter cations (pyH+) the MnIII fluoride phosphate anion [MnF(H2PO4)(HPO4)] can be stabilized. It forms a chain structure with Mn3+ ions bridged by a fluoride ion and two bidentate phosphate groups. Under sleightly differing conditions either the hemihydrate (pyH)[MnF(H2PO4)(HPO4)]·0.5H2O ( 1 ) or the monohydrate (pyH)[MnF(H2PO4)(HPO4)]·H2O ( 2 ) is formed. The hemihydrate 1 crystallizes monoclinic in space group P21/n, Z = 8, a = 7.295(1), b = 17.052(2), c = 18.512(3) Å, β = 100.78(1)°, R = 0.033, the monohydrate triclinic in space group P1¯, Z = 2, a = 7.374(1), b = 8.628(1), c = 10.329(1) Å, α = 83.658(8)°, β = 77.833(9)°, γ = 68.544(8)°, R = 0.025. Whereas the topology of the chain anions is identical in both structures, the Jahn‐Teller effect is expressed in different ordering patterns: in 1 antiferrodistortive ordering of [MnF2O4] octahedra is observed, with alternating elongation of an F—Mn—F‐axis or a O—Mn—O‐axis, respectively. This leads to asymmetrical Mn—F—Mn‐bridges. In 2 ferrodistortive ordering is found, with elongation of all octahedra along the F—Mn—F‐axis. Thus, symmetrical bridges are formed with long Mn—F distances. This unusual pseudo‐isomerism is attributed to the differing influence of inter‐chain hydrogen bonds.  相似文献   

4.
Yellowish single crystals of acidic mercury(I) phosphate (Hg2)2(H2PO4)(PO4) were obtained at 200 °C under hydrothermal conditions in 32% HF from a starting complex of microcrystalline (Hg2)2P2O7. Refinement of single crystal data converged at a conventional residual R[F2 > 2σ(F2)] = 3.8% (C2/c, Z = 8, a = 9.597(2) Å, b = 12.673(2) Å, c = 7.976(1) Å, β = 110.91(1)°, V = 906.2(2) Å3, 1426 independent reflections > 2σ out of 4147 reflections, 66 variables). The crystal structure consists of Hg22+‐dumbbells and discrete phosphate groups H2PO4 and PO43–. The Hg22+ pairs are built of two crystallographically independent Hg atoms with a distance d(Hg1–Hg2) = 2.5240(6) Å. The oxygen coordination sphere around the mercury atoms is asymmetric with three O atoms for Hg1 and four O atoms for Hg2. The oxygen atoms belong to the different PO4 tetrahedra, which in case of H2PO4‐groups are connected by hydrogen bonding. Upon heating over 230 °C, (Hg2)2(H2PO4)(PO4) condenses to (Hg2)2P2O7, which in turn disproportionates at higher temperatures into Hg2P2O7 and elemental mercury.  相似文献   

5.
Single crystals of the first anhydrous thallium nickel phosphates were prepared by reaction of heterogeneous Tl/Ni/P alloys with oxygen. TlNi4(PO4)3 (pale‐yellow, orthorhombic, space group Cmc21, a = 6.441(2)Å, b = 16.410(4)Å, c = 9.624(2)Å, Z = 4) crystallizes with a structure closely related to that of NaNi4(PO4)3. Tl4Ni7(PO4)6 (yellow‐brown, monoclinic, space group Cm, a = 10.711(1)Å, b = 14.275(2)Å, c = 6.688(2)Å, β = 103.50(2)°, Z = 8) is isotypic with Na4Ni7(PO4)6, and Tl2Ni4(P2O7)(PO4)2 (brown, monoclinic, space group C2/c, a = 10.389(2)Å, b = 13.888(16)Å, c = 18.198(3)Å, β = 103.1(2)°, Z = 8) adopts the K2Ni4(P2O7)(PO4)2 structure. Tl2Ni4(P2O7)(PO4)2 could also be prepared in nearly single phase form by reaction of Tl2CO3, NiO, and (NH4)2HPO4.  相似文献   

6.
Hydrothermally synthesized dipotassium gallium {hydrogen bis[hydrogenphosphate(V)]} difluoride, K2Ga[H(HPO4)2]F2, is isotypic with K2Fe[H(HPO4)2]F2. The main features of the structure are ([Ga{H(HPO4)2}F2]2−)n columns consisting of centrosymmetric Ga(F2O4) octahedra [average Ga—O = 1.966 (3) Å and Ga—F = 1.9076 (6) Å] stacked above two HPO4 tetrahedra [average P—O = 1.54 (2) Å] sharing two O‐atom vertices. The charge‐balancing seven‐coordinate K+ cations [average K—O,F = 2.76 (2) Å] lie in the intercolumn space, stabilizing a three‐dimensional structure. Strong [O...O = 2.4184 (11) Å] and medium [O...F = 2.6151 (10) Å] hydrogen bonds further reinforce the connections between adjacent columns.  相似文献   

7.
《Microporous Materials》1997,8(3-4):103-112
Fe4F3(PO4)(HPO4)4(H2O)4(N2C3H12) (labelled ULM-15) was prepared hydrothermally (7 days, 453 K, autogenous pressure) in the presence of 1,3-diaminopropane as organic template. Its structure was determined by single crystal X-ray diffraction. ULM-15 is monoclinic (Space group C2/c (no 15)) with lattice parameters a = 24.176(1) , b = 14.558(1) , c = 7.186(1) , β = 102.3(1)°, V = 2470.8(3) 3, Z = 4. Its three-dimensional framework is constituted from corner-sharing FeX6 (X = O, F, H2O) octahedra and tetrahedral PO4 and HPO4 groups. The structure presents trans-chains of FeO4F2 octahedra related to ferric dimers [Fe2O8F2(H2O)2] by tetrahedral units. They delimit 16-membered rings channels along [001] in which the diprotonated amines are inserted. ULM-15 shows 3D antiferromagnetic behaviour below TN ≈ 22 K.  相似文献   

8.
Hydrothermal synthesis, IR characterization and X-ray single-crystal structure are reported for CaBa(HPO4)2. It crystallizes in the monoclinic system, space group P21/a (N∘14) with a = 9.470(2) Å, b = 7.930(1) Å, c = 9.865(1) Å, β = 115.78(1)°, V = 667.1(2) Å3 and Z = 4. The refinement of data leads to R = 0.0331 for 1131 observed reflections [I > 4σ(I)]. The crystal structure of CaBa(HPO4)2 is built up from corner-and/or edge-sharing BaO9 polyhedra, CaO7 pentagonal bipyramids and (H)PO4 tetrahedra giving rise to a three-dimensional network. The HPO42− groups are located in layers parallel to the ab plane at z ~ 0 and z ~ 1/2. Interleaved barium and calcium cations ensure the cohesion between these sheets. Hydrogen bonds contribute to the stability of the structure.  相似文献   

9.
Pale rose single crystals of SrMn2(PO4)2 were obtained from a mixture of SrCl2 · 6 H2O, Mn(CH3COO)2, and (NH4)2HPO4 after thermal decomposition and finally melting at 1100 °C. The new crystal structure of strontium manganese orthophosphate [P‐1, Z = 4, a = 8.860(6) Å, b = 9.054(6) Å, c = 10.260(7) Å, α = 124.27(5)°, β = 90.23(5)°, γ = 90.26(6)°, 4220 independent reflections, R1 = 0.034, wR2 = 0.046] might be described as hexagonal close‐packing of phosphate groups. The octahedral, tetrahedral and trigonal‐bipyramidal voids within this [PO4] packing provide different positions for 8‐ and 10‐fold [SrOx] and distorted octahedral [MnO6] coordination according to a formulation Mn Mn Mn Sr (PO4)4. Single crystals of β′‐Mn3(PO4)2 (pale rose) were grown by chemical vapour transport (850 °C → 800 °C, P/I mixtures as transport agent). The unit cell of β′‐Mn3(PO4)2 [P21/c, Z = 12, a = 8.948(2) Å, b = 10.050(2) Å, c = 24.084(2) Å, β = 120.50°, 2953 independent reflections, R1 = 0.0314, wR2 = 0.095] contains 9 independent Mn2+. The reinvestigation of the crystal structure led to distinctly better agreement factors and significantly reduced standard deviations for the interatomic distances.  相似文献   

10.
Lithium iron(III) monophosphate-monohydrogen-monophosphate, Li2Fe[(PO4)(HPO4)], was synthesized under mild hydrothermal conditions and its crystal structure was determined by single crystal X-ray diffraction methods. Crystallographic data: monoclinic, P121/n1 (no. 14), a = 4.8142(2) Å, b = 7.9898(4) Å, c = 7.4868(4) Å, β = 104.398(3)°, V = 278.93(2) Å3, Z = 2, Dx = 3.104 g · cm-3. The structure is characterized by FeO6 octahedra sharing common O-corners with six neighbouring PO4 tetrahedra to form a three-dimensional framework. Lithium cations are located within channels running along [100]. The channels are formed by eight-membered rings resulting from the connection of alternating FeO6 octahedra (4×) and phosphate tetrahedra (4×). High-resolution diffraction data allowed to refine a split model for the position of the hydrogen atom. Magnetization data confirm the valence state 3+ for iron and detect an antiferromagnetic ordering of the iron moments below 23.6 K. Thermal decomposition of the compound was investigated by DTA/TG methods.  相似文献   

11.
Single crystals of potassium iron hydrogen phosphate, KFe3(HPO4)2(H2PO4)6 · 4 H2O, were prepared hydrothermally by heating a mixture of Fe2O3, H3PO4 and K2CO3 with a small amount of water. It crystallizes monoclinic, space group C2/c (N° 15 Int. Tab.) with Z = 4 and a = 1701(2), b = 960.4(5), c = 1750(1) pm, β = 90.88(7)°. The crystal structure was solved by using 1716 unique reflections F0 > 4σ(F0) with a final wR2 value of 0.126 (SHELXL-93). The main feature of the crystal structure are layers formed by PO4-tetrahedra around the FeO6-octahedra parallel to (001). K+ and H2O molecules connect these layers. Effective Coordination Numbers (ECoN), Mean Fictive Ionic Radii (MEFIR), Charge Distribution (CHARDI) and the Madelung Part of Lattice Energy (MAPLE) are calculated for the title compound. The existence of hydrogen bonds is confirmed by these calculations.  相似文献   

12.
Contributions on Crystal Chemistry and Thermal Behaviour of Anhydrous Phosphates. XXXII. New Orthophosphates of Divalent Chromium — Mg3Cr3(PO4)4, Mg3, 75Cr2, 25(PO4)4, Ca3Cr3(PO4)4 and Ca2, 00Cr4, 00(PO4)4 Solid state reactions via the gas phase led in the systems A3(PO4)2 / Cr3(PO4)2 (A = Mg, Ca) to the four new compounds Mg3Cr3(PO4)4 ( A ), Mg3.75Cr2.25(PO4)4 ( B ), Ca3Cr3(PO4)4 ( C ), and Ca2.00Cr4.00(PO4)4 ( D ). These were characterized by single crystal structure investigations [( A ): P21/n, Z = 1, a = 4.863(2) Å, b = 9.507(4) Å, c = 6.439(2) Å, β = 91.13(6)°, 1855 independend reflections, 63 parameters, R1 = 0.035, wR2 = 0.083; ( B ): P21/a, Z = 2, a = 6.427(2) Å, b = 9.363(2) Å, c = 10.051(3) Å, β = 106.16(3)°, 1687 indep. refl., 121 param., R1 = 0.032, wR2 = 0.085; ( C ): P‐1, Z = 2, a = 8.961(1) Å, b = 8.994(1) Å, c = 9.881(1) Å, α = 104.96(2)°, β = 106.03(2)°, γ = 110.19(2)°, 2908 indep. refl., 235 param., R1 = 0.036, wR2 = 0.111; ( D ): C2/c, Z = 4, a = 17.511(2) Å, b = 4.9933(6) Å, c = 16.825(2) Å, β = 117.95(1)°, 1506 indep. refl., 121 param., R1 = 0.034, wR2 = 0.098]. The crystal structures contain divalent chromium on various crystallographic sites, each showing a (4+n)‐coordination (n = 1, 2, 3). For the magnesium compounds and Ca2.00Cr4.00(PO4)4 a disorder of the divalent cations Mg2+/Cr2+ or Ca2+/Cr2+ is observed. Mg3.75Cr2.25(PO4)4 adopts a new structure type, while Mg3Cr3(PO4)4 is isotypic to Mg3(PO4)2. Ca3Cr3(PO4)4 and Ca2.00Cr4.00(PO4) 4 are structurally very closely related and belong to the Ca3Cu3(PO4)4‐structure family. The orthophosphate Ca9Cr(PO4)7, containing trivalent chromium, has been obtained besides C and D .  相似文献   

13.
Two new mixed‐valence iron phosphates, namely heptairon pentaphosphate hydrogen phosphate, Fe6.67(PO4)5.35(HPO4)0.65, and heptairon tetraphosphate bis(hydrogen phosphate), Fe6.23(PO4)4.45(HPO4)1.55, have been synthesized hydrothermally at 973 K and 0.1 GPa. The structures are similar to that of FeII3FeIII4(PO4)6 and are characterized by infinite chains of Fe polyhedra parallel to the [101] direction. These chains are formed by the Fe1O6 and Fe2O6 octahedra, alternating with the Fe4O5 distorted pentagonal bipyramids, according to the stacking sequence ...Fe1–Fe1–Fe4–Fe2–Fe2.... The Fe3O6 octahedra and PO4 tetrahedra connect the chains together. FeII is localized on the Fe3 and Fe4 sites, whereas FeIII is found in the Fe1 and Fe2 sites, according to bond‐valence calculations. Refined site occupancies indicate the presence of vacancies on the Fe4 site, explained by the substitution mechanism FeII + 2(PO43−) = vacancies + 2(HPO42−).  相似文献   

14.
Complex rare-earth molybdophosphates of sodium and potassium (Na2Yb(PO4)(MoO4) (I) and K2Yb(PO4)(MoO4) (II) are synthesized by solid-phase reactions at 600°C (for I) and 750°C (for II). The molybdophosphates are characterized using powder X-ray diffraction, laser second harmonic generation (SHG), IR spectroscopy, and differential thermal analysis. Their structures are refined using the Rietveld technique. The compounds are isostructural and crystallize in an orthorhombic system (space group Ibca, Z = 8). The unit cell parameters are a = 18.0086(1) Å, b = 12.0266(1) Å, c = 6.7742(1) Å for compound I and a = 19.6646(1) Å, b = 12.0570(1) Å, c = 6.8029(1) Å for compound II. The structures are built of YbO8 chains extended along axis c and linked into layers through PO4 tetrahedra. The Na+ cations (CN = 6) and the K+ cations (CN = 8) reside in the interlayer spaces.  相似文献   

15.
The α and β modifications of NH4HPO3F were synthesized and characterized with single crystal X‐ray diffraction. The crystal structure of α‐NH4HPO3F determined at 180 K is monoclinic, space group P21/n, with a = 7.4650(1), b = 15.586(2), c = 7.5785(9) Å, β = 108.769(9)°, V = 834.9(2) Å3, Z = 8, and R1 = 0.0376 and wR2 = 0.0818. β‐NH4HPO3F measured at 310 K crystallizes in the triclinic space group, P 1, with a = 7.481(1), b = 7.511(1), c = 7.782(1) Å, α = 84.31(1), β = 84.20(1), γ = 68.67(2)°, V = 404.31(9) Å3, Z = 4, and R1 = 0.0254 and wR2 = 0.0735. A phase transition was not observed between 180 and 310 K for β‐NH4HPO3F. Both modifications of NH4HPO4F consist of HPO3F and NH4+ units. Two pairs of two unique anions are linked to each other by O–H…O hydrogen bonds to form cyclic tetramers held together by N–H…O bonds. No O–H…F or N–H…F bonds were observed.  相似文献   

16.
A new ammonium gallium hydroxyphosphate (NH4)Ga(OH)PO4 was synthesized under mild hydrothermal conditions (200°C, τ = 168 h). The equimolar content of Ga and P was determined by chemical analysis and electron probe X-ray microanalysis. The presence of NH4 and OH groups was demonstrated by IR and Raman spectroscopy. An ab initio model of the crystal structure was refined by the Rietveld method (space group P21/m, Z = 2): a = 4.4832(1) Å, b = 6.0430(1) Å, c = 8.5674(1) Å, β = 98.019(1)°, R p = 0.0552, R wp = 0.0723. A zero SHG signal (T = 300 K) confirmed a centrosymmetric structure of the compound. The structure contains layers composed of GaO4(OH)2 octahedra and PO4 tetrahedra. The interlayer space accommodates ammonium cations. The layer is based on linear chains of edge-sharing GaO4(OH)2 octahedra with a zigzag trans-arranged-Ga-(OH)-Ga-(OH)-backbone. The construction of the layer in (NH4)Ga(OH)PO4 was found to be topologically related to that in (En)0.5Fe(OH)PO4. The effect of the gradual F? → OH? substitution in the quasi-morphotropic series (NH4)GaF1-δ(OH)δPO4 (δ = 0, 0.5, 1.0) on the degree of polarization of the mixed anionic radical was considered. (NH4)Ga(OH)PO4 is thermally unstable: removal of NH3 and H2O molecules in the range 170–450°C is accompanied by the formation of two polymorphs of GaPO4.  相似文献   

17.
A hydrothermal reaction of a mixture of ZnCO3, phosphoric acid, 1, 10‐phenanthroline in H2O gave rise to large plates of a new zinc phosphate, [(C12H8N2Zn)2(HPO4)(H2PO4)2], I . The structure consists of ZnO3N2 distorted trigonal‐bipyramidal and PO4 tetrahedral units linked through their vertices to give rise to a zero‐dimensional molecular solid (monomer). The structure of the monomer appears to be similar to the secondary building unit (SBU) 4 = 1, commonly found in many fibrous zeolites. To our knowledge, this is the first time this building unit has been isolated. The structure, with a unique composition, is stabilized by hydrogen bond interactions between the terminal —OH groups forms a one‐dimensional molecular wire and also by strong π…π interactions between the 1, 10‐phenanthroline units. Photoluminescence studies show that there is a ligand‐to‐metal charge transfer (LMCT). Crystal data: orthorhombic, space group = Fdd2 (no. 43), a = 40.4669(1), b = 7.4733(2), c = 17.4425(5)Å, V = 5274.9(2)Å3, Z = 8.  相似文献   

18.
The new ternary calcium indium(III) phosphate CaIn2(PO4)2(HPO4) with mixed octahedral-tetrahedral framework was synthesized through hydrothermal reaction of stoichiometric amounts of CaO and InCl3 with excess of H3PO4 and H2O at pH = 1. Single crystal x-ray diffraction studies show the compound to crystallize in monoclinic symmetry, space group P21/n (#14) with a = 657.08(6), b = 2023.7(2), c = 665.72(7) pm, β = 91.20(1)°, Z = 4 and R = 0.043. The framework is built up of dimers of edge-sharing InO6 octahedra forming In2O10 units sharing all their OXO ligands with PO4 tetrahedra, and HPO4 groups.  相似文献   

19.
The synthesis and structural study of three new AII(SbV0.5FeIII0.5)(PO4)2 (ABa, Sr, Pb) phosphates belonging to the ASbFePO system were reported here for the first time. Structures of [Ba], [Sr] and [Pb] compounds, obtained by solid state reaction in air atmosphere, were determined at room temperature from X-ray powder diffraction using the Rietveld method. BaII(SbV0.5FeIII0.5)(PO4)2 features the yavapaiite-type structure, with space group C2/m, Z = 2 and a = 8.1568(4) Å; b = 5.1996(3) Å c = 7.8290(4) Å; β = 94.53(1)°. AII(SbV0.5FeIII0.5)(PO4)2 (ASr, Pb) compounds have a distorted yavapaiite structure with space group C2/c, Z = 4 and a = 16.5215(2) Å; b = 5.1891(1) Å c = 8.0489(1) Å; β = 115.70(1)° for [Sr]; a = 16.6925(2) Å; b = 5.1832(1) Å c = 8.1215(1) Å; β = 115.03(1)° for [Pb]. Raman and Infrared spectroscopic study was used to obtain further structural information about the nature of bonding in selected compositions.  相似文献   

20.
A new microporous iron (III) phosphate, [H3N(CH2)4NH3]3[Fe8(HPO4)12(PO4)2(H2O)6], has been prepared using low temperature hydrothermal methods and characterized by single-crystal X-ray diffraction, EDAX, infrared spectroscopy, thermogravimetric analysis and bond valence sums. The title compound crystallizes as light pink hexagonal-shaped tabs in the centrosymmetric hexagonal space group 3¯ (No.147) with a = b = 13.495(2) Å, c = 9.396(2) Å, V = 1481.9(4) Å3 and Z = 4 with R/Rw = 0.044/0.048. The compound exhibits a complicated three-dimensional microporous structure with quaternary ammonium ions acting as a template for the framework. It is similar to previously reported [HN(CH2CH2)3NH]3[Fe8(HPO4)12(PO4)2(H2O)6].  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号