首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Steady flow of a viscous incompressible fluid in a channel, driven by suction or injection of the fluid through the channel walls, is investigated. The velocity equation of this problem is reduced to nonlinear ordinary differential equation with two boundary conditions by appropriate transformation and convert the two‐point boundary‐value problem for the similarity function into an initial‐value problem in which the position of the upper channel. Then obtained differential equation is solved analytically using differential transformation method and compare with He's variational iteration method and numerical solution. These methods can be easily extended to other linear and nonlinear equations and so can be found widely applicable in engineering and sciences. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The governing non-linear high-order, sixth-order in space and third-order in time, differential equation is constructed for the unsteady flow of an incompressible conducting fourth-grade fluid in a semi-infinite domain. The unsteady flow is induced by a periodically oscillating two-dimensional infinite porous plate with suction/blowing, located in a uniform magnetic field. It is shown that by augmenting additional boundary conditions at infinity based on asymptotic structures and transforming the semi-infinite physical space to a bounded computational domain by means of a coordinate transformation, it is possible to obtain numerical solutions of the non-linear magnetohydrodynamic equation. In particular, due to the unsymmetry of the boundary conditions, in numerical simulations non-central difference schemes are constructed and employed to approximate the emerging higher-order spatial derivatives. Effects of material parameters, uniform suction or blowing past the porous plate, exerted magnetic field and oscillation frequency of the plate on the time-dependent flow, especially on the boundary layer structure near the plate, are numerically analysed and discussed. The flow behaviour of the fourth-grade non-Newtonian fluid is also compared with those of the Newtonian fluid.  相似文献   

3.
Anewfieldofmoderncomputerscience—artificialintelligenceisdevelopedrapidly.Thesymbolicmanipulationisthefrontdirectionintheartificialintelligence.Aseriesofthecomputersoftwareisdevelopedforthecomputationalmanipulation,suchasMacsyma,Maple,Mathematica,toc…  相似文献   

4.
The problem of magnetohydrodynamic (MHD) flow on a moving surface with the power-law velocity and special injection/blowing is investigated. A scaling group transformation is used to reduce the governing equations to a system of ordinary differen- tial equations. The skin friction coefficients of the MHD boundary layer flow are derived, and the approximate solutions of the flow characteristics are obtained with the homotopy analysis method (HAM). The approximate solutions are easily computed by use of a high order iterative procedure, and the effects of the power-law index, the magnetic parameter, and the special suction/blowing parameter on the dynamics are analyzed. The obtained results are compared with the numerical results published in the literature, verifying the reliability of the approximate solutions.  相似文献   

5.
The problem of unsteady oscillatory flow and heat transfer of porous medin sandwiched between viscous fluids has been considered through a horizontal channel with isothermal wall temperatures. The flow in the porous medium is modeled using the Brinkman equation. The governing partial differential equations are transformed to ordinary differential equations by collecting the non-periodic and periodic terms. Closed-form solutions for each region are found after applying the boundary and interface conditions. The influence of physical parameters, such as the porous parameter, the frequency parameter, the periodic frequency parameter, the viscosity ratios, the conductivity ratios, and the Prandtl number, on the velocity and temperature fields is computed numerically and presented graphically. In addition, the numerical values of the Nusselt number at the top and bottom walls are derived and tabulated.  相似文献   

6.
Taking into account the slip flow effects, Newtonian heating, and thermal radiation, two-dimensional magnetohydrodynamic (MHD) flows and heat transfer past a permeable stretching sheet are investigated numerically. We use one parameter group transformation to develop similarity transformation. By using the similarity transformation, we transform the governing boundary layer equations along with the boundary conditions into ordinary differential equations with relevant boundary conditions. The obtained ordinary differential equations are solved with the fourth-fifth order Runge-Kutta- Fehlberg method using MAPLE 13. The present paper is compared with a published one. Good agreement is obtained. Numerical results for dimensionless velocity, temperature distributions, skin friction factor, and heat transfer rates are discussed for various values of controlling parameters.  相似文献   

7.
Two dimensional equations of steady motion for third order fluids are expressed in a special coordinate system generated by the potential flow corresponding to an inviscid fluid. For the inviscid flow around an arbitrary object, the streamlines are the phicoordinates and velocity potential lines are psi-coordinates which form an orthogonal curvilinear set of coordinates. The outcome, boundary layer equations, is then shown to be independent of the body shape immersed into the flow. As a first approximation, assumption that second grade terms are negligible compared to viscous and third grade terms. Second grade terms spoil scaling transformation which is only transformation leading to similarity solutions for third grade fluid. By ~sing Lie group methods, infinitesimal generators of boundary layer equations are calculated. The equations are transformed into an ordinary differential system. Numerical solutions of outcoming nonlinear differential equations are found by using combination of a Runge-Kutta algorithm and shooting technique.  相似文献   

8.
The flow of a power-law fluid is investigated in an asymmetric channel caused by the movement of peristaltic waves with the same speed but with different amplitudes and phases on the flexible walls of the channel. The differential equation governing the flow is non-linear and can admit non-unique solutions. There exist two different physically meaningful solutions one satisfying the boundary conditions at the upper wall and the other at the lower wall. The effects of the power-law nature of the fluid on the pumping characteristics and axial velocity are studied in detail.  相似文献   

9.
In this study, a non-Fourier heat conduction problem formulated using the Cattaneo–Vernotte (C–V) model with non-homogeneous boundary conditions is solved with the superposition principle in conjunction with solution structure theorems. It is well known that the aforementioned analytical method is not suitable for such a class of thermal problems. However, by performing a functional transformation, the original non-homogeneous partial differential equation governing the physical problem can be cast into a new form such that it consists of a homogeneous part and an additional auxiliary function. As a result, the modified homogeneous governing equation can then be solved with solution structure theorems for temperatures inside a finite planar medium. The methodology provides a convenient, accurate, and efficient solution to the C–V heat conduction equation with non-homogeneous boundary conditions.  相似文献   

10.
Stability of an isolated membrane lying in a uniform two-dimensional low subsonic flow is studied theoretically and experimentally. The problem is formulated in a form of a boundary integral equation and differential equations. The boundary integral equation is solved by the boundary element method and the finite difference method is used to solve the differential equations. An effect of a membrane wake is used in the analysis. The theoretical critical divergence velocity is compared with the experimental value.  相似文献   

11.
In a recent paper Gresho and Sani showed that Dirichlet and Neumann boundary conditions for the pressure Poisson equation give the same solution. The purpose of this paper is to confirm this (for one case at least) by numerically solving the pressure equation with Dirichlet and Neumann boundary conditions for the inviscid stagnation point flow problem. The Dirichlet boundary condition is obtained by integrating the tangential component of the momentum equation along the boundary. The Neumann boundary condition is obtained by applying the normal component of the momentum equation at the boundary. In this work solutions for the Neumann problem exist only if a compatibility condition is satisfied. A consistent finite difference procedure which satisfies this condition on non-staggered grids is used for the solution of the pressure equation with Neumann conditions. Two test cases are computed. In the first case the velocity field is given from the analytical solution and the pressure is recovered from the solution of the associated Poisson equation. The computed results are identical for both Dirichlet and Neumann boundary conditions. However, the Dirichlet problem converges faster than the Neumann case. In the second test case the velocity field is computed from the momentum equations, which are solved iteratively with the pressure Poisson equation. In this case the Neumann problem converges faster than the Dirichlet problem.  相似文献   

12.
Thermophoresis particle deposition with chemical reaction on Magnetohydrodynamic flow of an electrically conducting fluid over a porous stretching sheet in the presence of a uniform transverse magnetic field with variable stream conditions is investigated using scaling group transformation. Starting from Navier-Stokes equations and using scaling group transformations, the governing equations are obtained in the form of differential equations. The fluid viscosity is assumed to vary as a linear function of temperature. It is found that the decrease in the temperature-dependent fluid viscosity makes the velocity to decrease with the increasing distance of the stretching sheet. At a particular point of the sheet the fluid velocity decreases with the decreasing viscosity but the temperature increases in this case. Impact of thermophoresis particle deposition in the presence of chemical reaction plays an important role on the concentration boundary layer. The results thus obtained are presented graphically and discussed.  相似文献   

13.
Swati Mukhopadhyay 《Meccanica》2013,48(7):1717-1730
Similarity analysis is performed to investigate the structure of the boundary layer stagnation-point flow and heat transfer over a stretching sheet subject to suction. Fluid viscosity is assumed to vary as a linear function of temperature. Thermal radiation term is considered in the energy equation. The symmetry groups admitted by the corresponding boundary value problem are obtained by using a special form of Lie group transformations viz. scaling group of transformations. With the help of them the partial differential equations corresponding to momentum and energy equations are transformed into highly non-linear ordinary differential equations. Numerical solutions of these equations are obtained by shooting method. It is found that the horizontal velocity increases with the increasing values of the ratio of the free stream velocity to the stretching velocity. Velocity increases with the increasing temperature dependent fluid viscosity parameter when the free-stream velocity is less than the stretching velocity but opposite behavior is noted when the free-stream velocity is greater than the stretching velocity. Due to suction, fluid velocity decreases at a particular point of the surface. Temperature at a point of the surface is found to decrease with increasing thermal radiation.  相似文献   

14.
In this paper, we consider a singular perturbation boundary problem for a self-adjoint ordinary differential equaiton. We construct a class of difference schemes with fitted factors, and give the sufficient conditions under which the solution of difference scheme converges uniformly to the solution of differential equation. From this we propose several specific schemes under weaker conditions, and give much higher order of uniform convergence.  相似文献   

15.
We establish existence, uniqueness and stability of transonic shocks for a steady compressible non-isentropic potential flow system in a multidimensional divergent nozzle with an arbitrary smooth cross-section, for a prescribed exit pressure. The proof is based on solving a free boundary problem for a system of partial differential equations consisting of an elliptic equation and a transport equation. In the process, we obtain unique solvability for a class of transport equations with velocity fields of weak regularity (non-Lipschitz), an infinite dimensional weak implicit mapping theorem which does not require continuous Fréchet differentiability, and regularity theory for a class of elliptic partial differential equations with discontinuous oblique boundary conditions.  相似文献   

16.
The problem of steady, laminar mixed convection heat and mass transfer past a semi-infinite vertical plate in the presence of Hall current has been studied. The governing partial differential equations describing the problem are transformed to a system of non-linear ordinary differential equations with appropriate boundary conditions using Lie's method of infinitesimal transformation groups. The non-linear ordinary differential equations are solved numerically using Chebyshev spectral method. The effects of various parameters on the velocity profiles, temperature and concentration profiles are presented and discussed. This work is an extension and correction for the paper by Megahed et al. [1], published in International Journal of Non-Linear Mechanics 38 (2003) 513–520.  相似文献   

17.
A similarity solution is obtained for the two-dimensional creeping flow of a second-order fluid with non-parallel porous walls. The resulting ordinary differential equation is fifth order. Thus, an additional velocity boundary condition is needed, the other four being due to the usual no-slip conditions. Having chosen to prescribe the rate of shear at the wall, the problem is solved by a standard numerical routine. A singular perturbation analysis is developed for small values of the Deborah number. A type of boundary layer forms for which the viscous Newtonian case is the outer solution.  相似文献   

18.
Modern lubricants often exhibit shear-thinning due to the presence of high molecular weight polymers as additives. Therefore the influence of such non-Newtonian effects on the performances of lubricating systems must be predicted. The corresponding fluid film flow is governed by a non-linear partial differential equation, which generalizes the classical Reynolds equation. Having prescribed adequate boundary conditions, this equation is solved by a finite element method with optimal control. The problem of the square slider bearing lubricated by the Rabinowitsch fluid is solved in order to test the accuracy of the numerical scheme. The pressure and velocity fields are given and compared with the corresponding ones obtained for the Newtonian fluid.  相似文献   

19.
We study the MHD flow and also heat transfer in a viscoelastic liquid over a stretching sheet in the presence of radiation. The stretching of the sheet is assumed to be proportional to the distance from the slit. Two different temperature conditions are studied, namely (i) the sheet with prescribed surface temperature (PST) and (ii) the sheet with prescribed wall heat flux (PHF). The basic boundary layer equations for momentum and heat transfer, which are non-linear partial differential equations, are converted into non-linear ordinary differential equations by means of similarity transformation. The resulting non-linear momentum differential equation is solved exactly. The energy equation in the presence of viscous dissipation (or frictional heating), internal heat generation or absorption, and radiation is a differential equation with variable coefficients, which is transformed to a confluent hypergeometric differential equation using a new variable and using the Rosseland approximation for the radiation. The governing differential equations are solved analytically and the effects of various parameters on velocity profiles, skin friction coefficient, temperature profile and wall heat transfer are presented graphically. The results have possible technological applications in liquid-based systems involving stretchable materials.  相似文献   

20.
The influence of boundary conditions relaxation on two-dimensional panel flutter is studied in the presence of in-plane loading. The boundary value problem of the panel involves time-dependent boundary conditions that are converted into autonomous form using a special coordinate transformation. Galerkin's method is used to discretize the panel partial differential equation of motion into six nonlinear ordinary differential equations. The influence of boundary conditions relaxation on the panel modal frequencies and LCO amplitudes in the time and frequency domains is examined using the windowed short time Fourier transform and wavelet transform. The relaxation and system nonlinearity are found to have opposite effects on the time evolution of the panel frequency. Depending on the system damping and dynamic pressure, the panel frequency can increase or decrease with time as the boundary conditions approach the state of simple supports. Bifurcation diagrams are generated by taking the relaxation parameter, dynamic pressure, and in-plane load as control parameters. The corresponding largest Lyapunov exponent is also determined. They reveal complex dynamic characteristics of the panel, including regions of periodic, quasi-periodic, and chaotic motions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号