首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Halide anion‐doped bismuth terephthalate hybrids were synthesized using a facile solvothermal method. Four series of hybrids doped with halide anions X? (F?, Cl?, Br? and I?) were produced by varying the molar ratios (n) of X? relative to Bi(NO3)3 (n = 0.25, 0.5, 0.75 and 1) in dimethylformamide solution. The results indicated that 0.25 equiv. of different halide anion‐doped bismuth terephthalate hybrids, especially BiBDC‐Cl(0.25) and BiBDC‐Br(0.25), exhibited excellent photocatalytic activity under visible light and UV light irradiation. They also exhibited excellent adsorption performance for Rhodamine B which could be attributed to high surface areas and negative charge on the surface of the catalysts. Moreover, the degradation of Rhodamine B under visible light irradiation is a photosensitization process and ?O2? is the most important active species. The halide anion‐doped bismuth terephthalate hybrids are promising photocatalysts for removal of organic pollutants. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

2.
由于人类面临的能源危机与环境污染问题日益严重,光催化技术作为最有可能解决这两大问题的技术而备受关注。其中,光催化剂是光催化技术的核心。开发具有宽光谱响应、高载流子分离效率的光催化剂既是研究热点也是难点。铋系光催化剂具有较强的可见光吸收能力。但是,提高铋系光催化剂对入射光的吸收效率、降低光生载流子复合效率仍是提高其光催化活性的关键。目前主要通过以下策略来解决这些问题:(1)贵金属负载,(2)半导体复合,(3)金属/非金属掺杂,(4)碳材料修饰,(5)铋金属负载等。最后还简要探讨了具有异质结的铋系光催化剂的发展趋势及其潜在应用。
  采用贵金属负载于铋系光催化剂(构建肖特基结),可以通过等离子体共振效应拓宽铋系光催化剂的光吸收范围,同时贵金属还能有效转移半导体上的光生电子,促进光生载流子的有效分离。但是,采用贵金属负载存在昂贵、容易发生团聚等不足。通过半导体之间构建紧密异质结,不仅可以调节所制备复合催化剂的能带结构,满足不同光催化反应的要求,而且由于内电场的存在可以促进光生载流子定向转移,从而提高光生载流子的分离效率。除此之外,通过杂原子掺杂可以在原子层面上构建异质结结构,也能有效抑制光生载流子的复合。近年来,通过与具有较好导电性能的碳材料复合,可以快速转移铋系半导体上产生的光子,提高光催化剂的活性和量子效率。铋纳米颗粒具有与贵金属类似的性能,通过采用铋金属对铋系半导体进行负载也可以发生等离子体共振效应,从而可以提高铋系半导体的活性。最后,作者展望了铋系半导体复合光催化剂发展的三个重要方向:(1)创制非化学计量比的铋系半导体复合光催化材料;(2)通过与还原能力更强的半导体构建复合光催化材料,实现光催化 CO2还原制备有机物和光催化全解水的应用中去;(3)充分利用铋系半导体化合物具有较强氧化能力的优点,将其应用于光催化有机物合成中,比如光催化甲苯类有机物选择性氧化等。  相似文献   

3.
The visible‐light‐accelerated oxo‐azidation of vinyl arenes with trimethylsilylazide and molecular oxygen as stoichiometric oxidant was achieved. In contrast to photocatalysts based on iridium, ruthenium, or organic dyes, [Cu(dap)2]Cl or [Cu(dap)Cl2] were found to be unique for this transformation, which is attributed to their ability to interact with the substrates through ligand exchange and rebound mechanisms. CuII is proposed as the catalytically active species, which upon coordinating azide will undergo light‐accelerated homolysis to form CuI and azide radicals. This activation principle (CuII‐X→CuI+X.) opens up new avenues for copper‐based photocatalysis.  相似文献   

4.
Cascade charge transfer was realized by a H‐bond linked zinc phthalocyanine/BiVO4 nanosheet (ZnPc/BVNS) composite, which subsequently works as an efficient wide‐visible‐light‐driven photocatalyst for converting CO2 into CO and CH4, as shown by product analysis and 13C isotopic measurement. The optimized ZnPc/BVNS nanocomposite exhibits a ca. 16‐fold enhancement in the quantum efficiency compared with the reported BiVO4 nanoparticles at the excitation of 520 nm with an assistance of 660 nm photons. Experimental and theoretical results show the exceptional activities are attributed to the rapid charge separation by a cascade Z‐scheme charge transfer mechanism formed by the dimension‐matched ultrathin (ca. 8 nm) heterojunction nanostructure. The central Zn2+ in ZnPc could accept the excited electrons from the ligand and then provide a catalytic function for CO2 reduction. This Z‐scheme is also feasible for other MPc, such as FePc and CoPc, together with BVNS.  相似文献   

5.
A photocatalytic method for the aerobic oxidative cleavage of C=C bonds has been developed. Electron‐rich aromatic disulfides were employed as photocatalyst. Upon visible‐light irradiation, typical mono‐ and multi‐substituted aromatic olefins could be converted into ketones and aldehydes at ambient temperature. Experimental and computational studies suggest that a disulfide–olefin charge‐transfer complex is possibly responsible for the unconventional dissociation of S−S bond under visible light.  相似文献   

6.
RuII–bis‐pyridine complexes typically absorb below 450 nm in the UV spectrum and their molar extinction coefficients are only moderate (ε<16 000 M ?1 cm?1). Thus, RuII–polyimine complexes that show intense visible‐light absorptions are of great interest. However, no effective light‐harvesting ruthenium(II)/organic chromophore arrays have been reported. Herein, we report the first visible‐light‐harvesting RuII–coumarin arrays, which absorb at 475 nm (ε up to 63 300 M ?1 cm?1, 4‐fold higher than typical RuII–polyimine complexes). The donor excited state in these arrays is efficiently converted into an acceptor excited state (i.e., efficient energy‐transfer) without losses in the phosphorescence quantum yield of the acceptor. Based on steady‐state and time‐resolved spectroscopy and DFT calculations, we proposed a general rule for the design of RuII–polypyridine–chromophore light‐harvesting arrays, which states that the 1IL energy level of the ligand must be close to the respective energy level of the metal‐to‐ligand charge‐transfer (M LCT) states. Lower energy levels of 1IL/3IL than the corresponding 1M LCT/3M LCT states frustrate the cascade energy‐transfer process and, as a result, the harvested light energy cannot be efficiently transferred to the acceptor. We have also demonstrated that the light‐harvesting effect can be used to improve the upconversion quantum yield to 15.2 % (with 9,10‐diphenylanthracene as a triplet‐acceptor/annihilator), compared to the parent complex without the coumarin subunit, which showed an upconversion quantum yield of only 0.95 %.  相似文献   

7.
Photoresponsive molecular systems are essential for molecular optoelectronic devices, but most molecular building blocks are non‐photoresponsive. Employed here is a photoinduced proton transfer (PIPT) strategy to control charge transport through single‐molecule azulene junctions with visible light under ambient conditions, which leads to a reversible and controllable photoresponsive molecular device based on non‐photoresponsive molecules and a photoacid. Also demonstrated is the application of PIPT in two single‐molecule AND gate and OR gate devices with electrical signal as outputs.  相似文献   

8.
The development of visible‐light‐active photocatalysts is being investigated through various approaches. In this study, C60‐based sensitized photocatalysis that works through the charge transfer (CT) mechanism is proposed and tested as a new approach. By employing the water‐soluble fullerol (C60(OH)x) instead of C60, we demonstrate that the adsorbed fullerol activates TiO2 under visible‐light irradiation through the “surface–complex CT” mechanism, which is largely absent in the C60/TiO2 system. Although fullerene and its derivatives have often been utilized in TiO2‐based photochemical conversion systems as an electron transfer relay, their successful photocatalytic application as a visible‐light sensitizer of TiO2 is not well established. Fullerol/TiO2 exhibits marked visible photocatalytic activity not only for the redox conversion of 4‐chlorophenol, I?, and CrVI, but also for H2 production. The photoelectrode of fullerol/TiO2 also generates an enhanced anodic photocurrent under visible light as compared with the electrodes of bare TiO2 and C60/TiO2, which confirms that the visible‐light‐induced electron transfer from fullerol to TiO2 is particularly enhanced. The surface complexation of fullerol/TiO2 induced a visible absorption band around 400–500 nm, which was extinguished when the adsorption of fullerol was inhibited by fluorination of the surface of TiO2. The transient absorption spectroscopic measurement gave an absorption spectrum ascribed to fullerol radical cations (fullerol.+) the generation of which should be accompanied by the proposed CT. The theoretical calculation regarding the absorption spectra for the (TiO2 cluster+fullerol) model also confirmed the proposed CT, which involves excitation from HOMO (fullerol) to LUMO (TiO2 cluster) as the origin of the visible‐light absorption.  相似文献   

9.
The mechanism of the nitrene‐group transfer reaction from an organic azide to isonitrile catalyzed by a ZrIV d0 complex carrying a redox‐active ligand was studied by using quantum chemical molecular‐modeling methods. The key step of the reaction involves the two‐electron reduction of the azide moiety to release dinitrogen and provide the nitrene fragment, which is subsequently transferred to the isonitrile substrate. The reducing equivalents are supplied by the redox‐active bis(2‐iso‐propylamido‐4‐methoxyphenyl)‐amide ligand. The main focus of this work is on the mechanism of this redox reaction, in particular, two plausible mechanistic scenarios are considered: 1) the metal center may actively participate in the electron‐transfer process by first recruiting the electrons from the redox‐active ligand and becoming formally reduced in the process, followed by a classical metal‐based reduction of the azide reactant. 2) Alternatively, a non‐classical, direct ligand‐to‐ligand charge‐transfer process can be envisioned, in which no appreciable amount of electron density is accumulated at the metal center during the course of the reaction. Our calculations indicate that the non‐classical ligand‐to‐ligand charge‐transfer mechanism is much more favorable energetically. Utilizing a series of carefully constructed putative intermediates, both mechanistic scenarios were compared and contrasted to rationalize the preference for ligand‐to‐ligand charge‐transfer mechanism.  相似文献   

10.
Nanoporous silica solids can offer opportunities for hosting photocatalytic components such as various tetra‐coordinated transition metal ions to form systems referred to as “single‐site photocatalysts”. Under UV/visible‐light irradiation, they form charge transfer excited states, which exhibit a localized charge separation and thus behave differently from those of bulk semiconductor photocatalysts exemplified by TiO2. This account presents an overview of the design of advanced functional materials based on the unique photo‐excited mechanisms of single‐site photocatalysts. Firstly, the incorporation of single‐site photocatalysts within transparent porous silica films will be introduced, which exhibit not only unique photocatalytic properties, but also high surface hydrophilicity with self‐cleaning and antifogging applications. Secondary, photo‐assisted deposition (PAD) of metal precursors on single‐site photocatalysts opens up a new route to prepare nanoparticles. Thirdly, visible light sensitive photocatalysts with single and/or binary oxides moieties can be prepared so as to use solar light, the ideal energy source.  相似文献   

11.
A MnII phosphonate of the general formula [Mn(H2L)2(H2O)2(H2bibp)] adopts a layered motif with protonated H2bibp2+ cations embedded in the channels (H4L=thiophene‐2‐phosphonic acid; bibp=4,4′‐bis(1‐imidazolyl)biphenyl). The title compound exhibits excellent adsorptive removal of methyl orange (MO) dye from aqueous solution. Its advantageous features include fast adsorption, high uptake capacity, selective removal, and reusability, which are of great significance for practical application in wastewater treatment. Meanwhile, the compound displays rapid photochromism upon irradiation with visible light at room temperature. Extensive research has demonstrated that such behavior is based on a ligand‐to‐ligand charge‐transfer (LLCT) mechanism. The irradiated sample possesses an ultra‐long‐lived charge‐separated state. Moreover, not only is the compound the first Mn‐based photochromic MOF, but it is also one of the very few examples showing LLCT with non‐photochromic components.  相似文献   

12.
Disclosed herein is the visible‐light‐promoted deaminative C(sp3)?H alkylation of glycine and peptides using Katritzky salts as electrophiles. Simple reaction conditions and excellent functional‐group tolerance provide a general strategy for the efficient preparation of unnatural α‐amino acids and precise modification of peptides with unnatural α‐amino‐acid residues. Mechanistic studies suggest that visible‐light‐promoted intermolecular charge transfer within a glycine–Katritzky salt electron donor‐acceptor (EDA) complex induces a single‐electron transfer process without the assistance of photocatalyst.  相似文献   

13.
Two zwitterionic‐type ligands featuring π–π* and intraligand charge‐transfer (ILCT) excited states, namely 1,1′‐(2,3,5,6‐tetramethyl‐1,4‐phenylene)bis(methylene)dipyridinium‐4‐olate (TMPBPO) and 1‐dodecylpyridin‐4(1 H)‐one (DOPO), have been prepared and applied to the assembly of lanthanide coordination complexes in an effort to understand the ligand‐direction effect on the structure of the Ln complexes and the ligand sensitization effect on the luminescence of the Ln complexes. Due to the wide‐band triplet states plus additional ILCT excitation states extending into lower energy levels, broadly and strongly sensitized photoluminescence of f→f transitions from various Ln3+ ions were observed to cover the visible to near‐infrared (NIR) regions. Among which, the Pr, Sm, Dy, and Tm complexes simultaneously display both strong visible and NIR emissions. Based on the isostructural feature of the Ln complexes, color tuning and single‐component white light was achieved by preparation of solid solutions of the ternary systems Gd‐Eu‐Tb (for TMPBPO) and La‐Eu‐Tb and La‐Dy‐Sm (for DOPO). Moreover, the visible and NIR luminescence lifetimes of the Ln complexes with the TMPBPO ligand were investigated from 77 to 298 K, revealing a strong temperature dependence of the Tm3+ (3H4) and Yb3+ (2F5/2) decay dynamics, which has not been explored before for their coordination complexes.  相似文献   

14.
Computational investigation of the photochemical properties of transition‐metal‐centered dyes typically involves optimization of the molecular structure followed by calculation of the UV/visible spectrum. At present, these steps are usually carried out using density functional theory (DFT) and time‐dependent DFT calculations. Recently, we demonstrated that semiempirical methods with appropriate parameterization could yield geometries that were in very good agreement with DFT calculations, allowing large sets of molecules to be screened quickly and efficiently. In this article, we modify a configuration interaction (CI) method based on a semiempirical PM6 Hamiltonian to determine the UV/visible absorption spectra of Ru‐centered complexes. Our modification to the CI method is based on a scaling of the two‐center, two‐electron Coulomb integrals. This modified, PM6‐based method shows a significantly better match to the experimental absorption spectra versus the default configuration interaction method (in MOPAC) on a training set of 13 molecules. In particular, the modified PM6 method blue‐shifts the location of the metal‐to‐ligand charge‐transfer (MLCT) peaks, in better agreement with experimental and DFT‐based computational results, correcting a significant deficiency of the unmodified method. Published 2018. This article is a U.S. Government work and is in the public domain in the USA  相似文献   

15.
Cobalt‐based compounds, such as cobalt(II) hydroxide, are known to be good catalysts for water oxidation. Herein, we report that such cobalt species can also activate wide‐band‐gap semiconductors towards visible‐light water oxidation. Rutile TiO2 powder, a well‐known wide‐band‐gap semiconductor, was capable of harvesting visible light with wavelengths of up to 850 nm, and thus catalyzed water oxidation to produce molecular oxygen, when decorated with cobalt(II) hydroxide nanoclusters. To the best of our knowledge, this system constitutes the first example that a particulate photocatalytic material that is capable of water oxidation upon excitation by visible light can also operate at such long wavelengths, even when it is based on earth‐abundant elements only.  相似文献   

16.
Direct ion exchange of cyclometalated iridium(III) and tris‐2,2′‐bipyridyl rhodium(III) complexes, of which the former acts as a photosensitizer and the latter as a proton reduction catalyst, within a macroreticular acidic resin has been accomplished with the aim of developing a photocatalyst for H2 production under visible‐light irradiation. Ir LIII‐edge and Rh K‐edge X‐ray absorption fine structure (XAFS) measurements suggest that the Ir and Rh complexes are easily accommodated in the macroreticular space without considerable structural changes. The photoluminescence emission of the exchanged Ir complex due to a triplet ligand charge‐transfer (3LC) and metal‐to‐ligand charge‐transfer (3MLCT) transition near 550 nm decreases with increasing the amount of the Rh complex, thus suggesting the occurrence of an electron transfer from Ir to Rh. The Ir‐Rh/resin catalyst behaves as a heterogeneous photocatalyst capable of both visible‐light sensitization and H2 production in an aqueous medium in the absence of an electron mediator. The photocatalytic activitity is strongly dependent on the amount of the components and reaches a maximum at a molar ratio of 2:1 of Ir/Rh complexes. Moreover, leaching and agglomeration of the active metal complexes are not observed, and the recovered photocatalyst can be recycled without loss in catalytic activity.  相似文献   

17.
The development of an efficient and stable artificial photosensitizer for visible‐light‐driven hydrogen production is highly desirable. Herein, a new series of charge‐neutral, heteroleptic tricyclometalated iridium(III) complexes, [Ir(thpy)2(bt)] ( 1 – 4 ; thpy=2,2′‐thienylpyridine, bt=2‐phenylbenzothiazole and its derivatives), were systematically synthesized and their structural, photophysical, and electrochemical properties were established. Three solid‐state structures were studied by X‐ray crystallographic analysis. This design offers the unique opportunity to drive the metal‐to‐ligand charge‐transfer (MLCT) band to longer wavelengths for these iridium complexes. We describe new molecular platforms that are based on these neutral iridium complexes for the production of hydrogen through visible‐light‐induced photocatalysis over an extended period of time in the presence of [Co(bpy)3]2+ and triethanolamine (TEOA). The maximum amount of hydrogen was obtained under constant irradiation over 72 h and the system could regenerate its activity upon the addition of cobalt‐based catalysts when hydrogen evolution ceased. Our results demonstrated that the dissociation of the [Co(bpy)3]2+ catalyst contributed to the loss of catalytic activity and limited the long‐term catalytic performance of the systems. The properties of the neutral complexes are compared in detail to those of two known non‐neutral bpy‐type complexes, [Ir(thpy)2(dtb‐bpy)]+ ( 5 ) and [Ir(ppy)2(dtb‐bpy)]+ ( 6 ; ppy=2‐phenylpyridine, dtb‐bpy=4,4′‐di‐tert‐butyl‐2,2′‐dipyridyl). This work is expected to contribute toward the development of long‐lasting solar hydrogen‐production systems.  相似文献   

18.
Development of triaryamine‐based nonmetallic dye sensitizers is a hot topic in the solar cell research. A series of triaryamine‐based dyes WS1 – WS7 were designed with W1 as the prototype. Density functional theory (DFT) and time‐dependent‐DFT calculations were used to investigate the effects of the attached donor D on the absorption spectra and electronic properties of the dyes. The light‐harvesting efficiency (LHE), hole injection force (ΔGinj), dye regeneration force (ΔGreg), and charge recombination force (ΔGCR) for all the dyes were predicted. The insertion of D not only results in a red shift in the absorption spectra for all dyes but also achieves a broader absorption for visible light. Compared with that of the prototype, the absorption peak of the dye WS7 has a red shift of 95 nm and an oscillator strength increase of 29%. The absorption peak of WS7 is wider and stronger, and the absorption range extends to 900 nm. The LHE and ΔGreg values of WS7 are 0.991 and ?1.49 eV, respectively. On overall evaluation, WS7 is a promising candidate of a p‐type dye sensitizer with good light absorption and dye regeneration efficiency.  相似文献   

19.
New Mn(II), Ni(II), Co(II) and Cu(II) complexes of an azo dye ligand based on p ‐phenylenediamine with 5‐nitro‐8‐hydroxyquinoline were synthesized and characterized using elemental analysis, inductive coupled plasma analysis, molar conductance, powder X‐ray diffraction, thermogravimetric analysis, magnetic moment measurements, and infrared, 1H NMR, electron ionization mass and UV–visible spectral studies. The spectral and analytical data reveal that the azo dye ligand acts as a monobasic bidentate ligand via deprotonated OH and nitrogen atom of the quinoline ring. The data support the formulation of all complexes with a 2:1 ligand‐to‐metal ratio, except the Mn(II) complex that has a mononuclear formula. All complexes have an octahedral structure. The molar conductance data reveal that all the metal complexes are non‐electrolytic in nature. From the X‐ray data, the average particle size of the ligand and its complexes is 0.32–0.64 nm. The colour fastness to light, washing, perspiration, sublimation and rubbing of the prepared ligand and its complexes on polyester fabrics and colorimetric properties were measured. The results reveal that the ligand and its complexes have a good to moderate affinity to polyester fibres.  相似文献   

20.
Ultra‐high‐molecular‐weight (UHMW) polymers display outstanding properties and hold potential for wide applications. However, their precise synthesis remains challenging. Herein, we developed a novel reversible‐deactivation radical polymerization based on the strong and selective fluorine–fluorine interaction, allowing chain‐transfer agents to spontaneously differentiate into two groups that take charge of the chain growth and reversible deactivation of the growing chains, respectively. This method enables dramatically improved livingness of propagation, providing UHMW polymers with a surprisingly narrow molecular weight distribution (?≈1.1) from a variety of fluorinated (meth)acrylates and acrylamide at quantitative conversions under visible‐light irradiation. In situ chain‐end extensions from UHMW polymers facilitated the synthesis of well‐defined block copolymers, revealing the excellent chain‐end fidelity achieved by this method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号