首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photoswitch triads comprising two dihydroazulene (DHA) units in conjugation with a central trans-azobenzene (AZB) unit were prepared in stepwise protocols starting from meta- and para-disubstituted azobenzenes. The para-connected triad had significantly altered optical properties and lacked the photoactivity of the separate photochromes. In contrast, for the meta-connected triad, all three photochromes could be photoisomerized to generate an isomer with two vinylheptafulvene (VHF) units and a cis-azobenzene unit. Ultrafast spectroscopy of the photoisomerizations revealed a fast DHA-to-VHF photoisomerization and a slower trans-to-cis AZB photoisomerization. This meta triad underwent thermal VHF-to-DHA back-conversion with a similar rate of all VHFs, independent of the identity of the neighboring units, and in parallel thermal cis-to-trans AZB conversion. The experimental observations were supported by computation (excitation spectra and orbital analysis of the transitions).  相似文献   

2.
Stable meta‐ and para‐phenylene bridged porphyrin meso‐oxy radical dimers and their NiII and ZnII complexes were synthesized. All the dimers exhibited optical and electrochemical properties similar to the corresponding porphyrin meso‐oxy radical monomers, indicating small electronic interaction between the two spins. Intramolecular spin‐spin interaction through the π‐spacer was determined to be J/kB=?15.9 K for m‐phenylene bridged ZnII porphyrin dimer. The observed weak antiferromagnetic interaction has been attributed to less effective conjugation between the porphyrin radical and linking π‐spacer due to large dihedral angle. In the case of ZnII complexes, both para‐ and meta‐phenylene bridged dimers formed 1D‐chain in solutions and in the solid states through Zn‐O coordination.  相似文献   

3.
From the viewpoint of parameta topological bridging effect on the electronic coupling in organic mixed‐valence (MV) systems, the optically induced and thermally assisted intramolecular charge/spin transfer (ICT/IST) processes have been investigated for three bis(triarylamine) (BTA) radical cations as missing key compounds in very basic BTA MV systems. In contrast to the case of p‐ and m‐dinitrobenzene radical anions, the difference in the strength of electronic coupling (V) was not so large for the present BTA MV radical cations, although they still fall within the paradigm of strong V for para‐linkage and weak V for meta‐linkage. Unexpectedly, it has been found that meta‐phenylenediamine radical cation has an electronic coupling comparable to those in the para‐conjugated BTA‐based MV species, and the ICT/IST rate exceeds the ESR time‐scale. This finding is very encouraging considering that sufficient electronic communication can be ensured even when the redox‐active centers are linked directly by the meta‐phenylene bridge, thus broadening the selection of π‐bridging units for molecule‐based optoelectronics.  相似文献   

4.
Despite the worldwide interest generated by periodic mesoporous organosilica (PMO) bulk materials, the design of PMO nanomaterials with controlled morphology remains largely unexplored and their properties unknown. In this work, we describe the first study of PMO nanoparticles (NPs) based on meta‐phenylene bridges, and we conducted a comparative structure–property relationship investigation with para‐phenylene‐bridged PMO NPs. Our findings indicate that the change of the isomer drastically affects the structure, morphology, size, porosity and thermal stability of PMO materials. We observed a much higher porosity and thermal stability of the para‐based PMO which was likely due to a higher molecular periodicity. Additionally, the para isomer could generate multipodal NPs at very low stirring speed and upon this discovery we designed a phenylene–ethylene bridged PMO with a controlled Janus morphology. Unprecedentedly high payloads could be obtained from 40 to 110 wt % regardless of the organic bridge of PMOs. Finally, we demonstrate for the first time the co‐delivery of two cargos by PMO NPs. Importantly, the cargo stability in PMOs did not require the capping of the pores, unlike pure silica, and the delivery could be autonomously triggered in cancer cells by acidic pH with nearly 70 % cell killing.  相似文献   

5.
Multi-photochromic systems incorporating individually addressable switching units are attractive for development of advanced data storage devices. Here, we present the synthesis and properties of a selection of such molecular systems incorporating the dihydroazulene/vinylheptafulvene (DHA/VHF) photo-/thermoswitch. The influence of the linker (meta-phenylene vs. azulene-1,3-diyl vs. thiophene-2,5-diyl) separating two DHA units on the switching properties was investigated. An azulene-1,3-diyl spacer largely inhibited both the DHA-to-VHF photoisomerizations and the thermal VHF-to-DHA back-reactions; the latter occurred ten times slower than for the related compound with a meta-phenylene spacer. A DHA trimer containing three DHA units around a central benzene ring was found to undergo stepwise DHA-to-VHF photoisomerizations, whereas the thermal back-reactions occurred at similar rates for the three VHF entities. A meta-phenylene-bridged DHA dimer was subjected to further structural modifications at position C-1 of each DHA, having strong implications for the switching events, and synthetic steps for further functionalizations at position C-7 of each DHA were investigated. Finally, the molecular structure (from X-ray crystallographic analysis) between the meta-phenylene-bridged DHA dimer and CuI is presented.  相似文献   

6.
Novel conjugated polymers containing 3,9‐ or 2,9‐linked carbazole units in the main chain were synthesized by the polycondensation of ethynyl‐ and iodo‐substituted 9‐arylenecarbazolylene monomers, and their optical and electrical properties were studied. Polymers with weight‐average molecular weights of 3400–12,000 were obtained in 76–99% yields by the Sonogashira coupling polycondensation in piperidine or tetrahydrofuran (THF)/piperidine at 30 °C for 48 h. All the 3,9‐linked polymers absorbed light around 300 nm. The para‐phenylene‐linked polymer also absorbed light around 350 nm, while meta‐phenylene‐linked one did not. The 3,9‐linked polymers absorbed light at a wavelength longer than the 2,9‐linked one. The polymers emitted blue fluorescence with high quantum yields (0.21–0.78) upon excitation at the absorption maxima. The polymers were oxidized around 0.6 V, and reduced around 0.5 V. Poly( 1 ) showed the dark conductivity of 3.7 × 10?11 S/cm (103 V/cm). © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3506–3517, 2009  相似文献   

7.
We review advances in liquid crystalline (LC) conjugated polymers by focusing on (i) ferroelectric and (ii) photoresponsive LC conjugated polymers. In Part 1, LC polyphenylene derivatives were synthesized through substitution of fluorine‐containing chiral LC groups into side chains. Poly(para‐phenylene) [ P1 ] and poly(meta‐phenylene) [ P2 ] derivatives showed chiral smectic C phases responsible for ferroelectricity. They exhibited quick response to electric field, giving switching times of <1 s between two bistable states. The spontaneous polarization (PS) of P2 remained unchanged even after the electric field became zero, affording the residual polarization (PR) whose value was the same as that of PS. This indicates that P2 has a potential memory function based on FLC nature. In Part 2, poly(para‐phenylenevinylene) [ P5 ] and poly(bithienylene‐phenylene) [ P6 ] derivatives were synthesized by introducing dithienylethene moieties into side chains. Drastic quenching of fluorescence occurred when the photoresponsive moiety changed from an open form to a closed one upon an irradiation of ultraviolet light. The quenched fluorescence was recovered through a photoisomerization from the closed form to the open one. Macroscopically aligned P6 film exhibited a linearly polarized fluorescence with significant anisotropy. Reversible quenching and emitting behavior in anisotropic fluorescence was controlled by the photochemical switching. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2463–2485, 2009  相似文献   

8.
Liquid crystalline (LC) polyphenylene derivatives, such as poly(para‐phenylene) (PPP), poly(meta‐phenylene) (PMP), poly(meta‐biphenylene) (PBP), and poly (meta‐terphenylene) (PTP) derivatives, were synthesized through substitution of fluorine‐containing chiral LC groups into side chains, with an aim to develop ferroelectric LC (FLC) conjugated polymers. All the polymers, except PTP, showed enantiotropic liquid crystallinities, where several types of mesophases were observed in both heating and cooling processes. Among them, PPP and PMP derivatives showed chiral smectic C (SC*) phases responsible for ferroelectricity. In fact, they exhibited quick response to electric field, in spite of high viscosities inherent to polymers, giving rise to switching times of less than 1 s between two SC states with reversely directed alignment. Hysteresis loops between the polarization and electric field were also observed for PPP and PMP. The spontaneous polarization (PS) of PMP remained unchanged even after the electric field became zero, affording the residual polarization (PR) whose value was the same as that of PS. This indicates that PMP has a prospective memory function based on FLC nature. The present study is the first report for realizing a quick switching in macroscopic alignment using electric field and also for generating a potential memory function in π‐conjugated polymers. It is elucidated that unusual polymer main chains such as polyphenylenes can be used to prepare new ferroelectric polymers. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3591–3610, 2008  相似文献   

9.
meta‐ and para‐Phenylenediamine‐fused nickel(II) porphyrin dimers were synthesized by SNAr reaction of meso,β,β‐trichloro nickel(II) porphyrin with meta‐ and para‐phenylenediamines and subsequent Pd‐catalyzed intramolecular C?H arylation. Their tetrachlorinated dication diradicals are very stable, allowing SQUID magnetometry and revealing clear open‐shell characters for both meta and para isomers with ferro‐ and anti‐ferromagnetic interactions, respectively. The nitrogen analogue of Thiele's hydrocarbon usually displays predominant closed‐shell nature but its hidden diradical characters increase either in a twisted conformation or upon insertion of an additional phenylene spacer. The observed distinct diradical nature of the para‐congener indicates that diradical properties can be enhanced also by efficient spin delocalization.  相似文献   

10.
A series of perylene‐3,4,9,10‐bis(dicarboximide) (PDI) dimers linked through the bay regions was systematically synthesized to examine the electronic structures and photophysical properties in dependence on the distance and orientation between the two PDI units. The spectroscopic and electrochemical measurements suggested that the coupling value of a directly linked PDI dimer (PDI)2 is much larger than those of para‐ and meta‐phenylene‐bridged PDI dimers p‐(PDI)2 and m‐(PDI)2. The width of Davydov splitting was quantitatively evaluated to compare the coupling values between the two PDI units in these dimers by absorption spectroscopy in frozen 2‐methyl‐THF. Excimer formation of PDI dimers induced the strong fluorescence quenching and large red‐shifts. Femtosecond transient absorption revealed a broad absorption derived from an excimer in the range from about 600 nm to the near‐IR region. The rate constants of formation and decay of the excimer are strongly dependent on the coupling values. Time‐resolved measurements on ferrocene‐linked p‐(PDI)2 revealed a competition between the photoinduced processes of electron transfer and excimer formation in PhCN, which is in sharp contrast with the sole electron‐transfer process in toluene.  相似文献   

11.
The double benzannulation of bis‐carbene complexes of chromium with α,ω‐diynes generates [m.n]cyclophanes in which all three rings are generated in a single reaction. This triple annulation process is very flexible allowing for the construction of symmetrical [n.n]cyclophanes and unsymmetrical [m.n]cyclophanes as well as isomers in which the two benzene rings are both meta bridged or both para bridged, and isomers that contain both meta and para bridges. The connectivity patterns of the bridges in the cyclophanes can be controlled by regioselectivity transfer from the bis‐vinyl carbene complexes in which the substitution pattern of the vinyl groups in the carbene complexes dictate the connectivity pattern in the [m.n]cyclophanes. This synthesis of [n.n]cyclophanes is quite flexible with regard to ring size and can be used with tether lengths ranging from n=2 to n=16 and thus to ring sizes with up to 40 member rings. The only limitation to regioselectivity transfer from the carbene complexes to the [m.n]cyclophanes was found in the synthesis of para,para‐cyclophanes with four carbon tethers for which the loss of fidelity occurred with the unexpected formation of meta,para‐cyclophanes.  相似文献   

12.
Three ferrocenyl‐functionalized tripodal hexaurea anion receptors with ortho‐ ( L2 ), meta‐ ( L3 ), and para‐phenylene ( L4 ) bridges, which showed strong binding affinities toward sulfate ions, have been designed and synthesized. In particular, meta‐phenylene‐bridged ligand L3 , owing to its trigonal bipyramidal structure, can encapsulate two SO42? ions in its “inner” and “outer” tripodal clefts, respectively, as supported by their clearly distinct NMR resonances and by molecular modeling. The sulfate complex of ortho‐ligand L2 , (TBA)2[SO4? L2 ] ? 2 H2O ( 1 ), displays a caged tetrahedral structure with an encapsulated sulfate ion that is hydrogen bonded by the six urea groups of ligand L2 . CV studies showed two types of electrochemical response of the ferrocene/ferrocenium redox couple upon anion binding, that is, a shift of the wave and the appearance of a new peak. Quantitative binding data were obtained from the NMR and CV titrations.  相似文献   

13.
A circularly polarized luminescence (CPL) material has been created by polymer–polymer complexation between a helix‐forming polysaccharide, schizophyllan (SPG), and a meta‐phenylene‐linked polyfluorene derivative (mPFS). Computational modeling revealed that mPFS can adopt a helical structure although a conventional polyfluorene derivative with a para‐phenylene linkage tends to enjoy a rigid rodlike conformation. Our detailed experimental examination showed that mPFS forms a chiral nanowire complex through cohelix formation with SPG. We have found, as expected, that this cohelical complex emits highly efficient CPL even in an aqueous solution. The appearance of the high CPL property is due to 1) a high quantum yield of the fluorene unit and 2) immobilization of the helically twisted conformation of mPFS in an isolated manner through cohelix formation with SPG. One can propose, therefore, that the SPG/mPFS complex acts as a new high‐performance CPL material with a solvent‐dispersible nanowire structure.  相似文献   

14.
Summary The synthesis and spectroscopic characterization of a series ofmeso-tetraphenyl substituted porphyrins appended with glycerol, diacetylglycerol, or isopropylideneglycerol units inortho,meta, orpara position of the phenylene ring is described.
Synthese und Charakterisierung von an den Phenylresten mit Glycerinderivaten monosubstituierten Tetraphenylporphyrinen
Zusammenfassung Synthese und spektroskopische Charakterisierung einer Reihe von an den Phenylringen inortho-,meta- oderpara-Position mit Glycerin, Diacetylglycerin oder Isopropylidenglycerin substituiertenmeso-tetraphenylsubstituierten Porphyrinen wird beschrieben.
  相似文献   

15.
This work deals with the synthesis and the photophysical and laser properties of new BODIPY‐rhodamine cassettes. These dyads differ in their rigid and conjugated spacer group (phenyl or acetylenephenyl) and in their linking positions (meta or para). The photophysical properties of these cassettes are controlled by the formation/opening of the spirolactone ring, which, in turn, switches off/on an energy‐transfer process between the chromophores. Herein, we thoroughly describe the influence of the attached spacer group, as well as the distance and orientation between the donor–acceptor pair, on the excitation energy transfer. The observed fast dynamics and efficiency suggest that the process mainly takes place “through‐bond”, although the “through‐space” mechanism also contributes to the whole process. As a result, efficient laser emission from the rhodamine is achieved upon excitation of the BODIPY, in particular for the cassette that contains an acetylenephenyl spacer group in a para disposition.  相似文献   

16.
A simple and high‐yielding route to tough polyarylenes of the type poly(meta,meta,para‐phenylene) (PmmpP) is developed. PmmpP is tough even in its as‐synthesized state which has an intermediate molar mass of Mw≈60 kg mol−1 and exhibits outstanding mechanical properties at further optimized molecular weight of Mw=96 kg mol−1, E=0.9 GPa, ϵ=300 %. Statistical copolymers with para,para‐spiropyran (SP) are mechanochromic, and the toughness allows mechanochromism to be investigated. Strained samples instantaneously lose color upon force release. DFT calculations show this phenomenon to be caused by the PmmpP matrix that allows build‐up of sufficiently large forces to be transduced to SP, and the relatively unstable corresponding merocyanine (MC) form arising from the aromatic co‐monomer. MC units covalently incorporated into PmmpP show a drastically reduced half life time of 3.1 s compared to 4.5 h obtained for SP derivatives with common 6‐nitro substitution.  相似文献   

17.
A simple and high‐yielding route to tough polyarylenes of the type poly(meta,meta,para‐phenylene) (PmmpP) is developed. PmmpP is tough even in its as‐synthesized state which has an intermediate molar mass of Mw≈60 kg mol?1 and exhibits outstanding mechanical properties at further optimized molecular weight of Mw=96 kg mol?1, E=0.9 GPa, ?=300 %. Statistical copolymers with para,para‐spiropyran (SP) are mechanochromic, and the toughness allows mechanochromism to be investigated. Strained samples instantaneously lose color upon force release. DFT calculations show this phenomenon to be caused by the PmmpP matrix that allows build‐up of sufficiently large forces to be transduced to SP, and the relatively unstable corresponding merocyanine (MC) form arising from the aromatic co‐monomer. MC units covalently incorporated into PmmpP show a drastically reduced half life time of 3.1 s compared to 4.5 h obtained for SP derivatives with common 6‐nitro substitution.  相似文献   

18.
Aromatic polyesters connected by methylene groups were synthesized. Two pairs of aromatic diacid chlorides, 3,3′-methylenedibenzoyl chloride and 4,4′-methylenedibenzoyl chloride were each polymerized via interfacial polycondensation with 2,2-bis(4-hydroxyphenyl)propane (bisphenol A), 3,3′-methylenediphenol, and 4,4′-methylenediphenol. For comparison, 3,3′-carbonyldibenzoyl chloride and 4,4′-carbonyldibenzoyl chloride were similarly polymerized with bisphenol A. Substitution of meta,meta' oriented phenylene groups for para,para' oriented phenylene groups had a significant and cumulative effect in reducing the glass transition temperatures of the polymers, thereby enhancing their processability. In air the methylene groups of the polyesters undergo oxidation and crosslinking at elevated temperatures. Electron beam irradiation of thin films of the methylene-linked polyesters at room temperature resulted in some chain extension and crosslinking, as evidenced by increased solution viscosity and gel formation. Irradiation at a temperature near or above the glass transition temperatures of the polymers greatly enhanced the tendency for the polymers to crosslink.  相似文献   

19.
Four para‐linked or meta‐linked cationic water‐soluble fluorene‐containing poly(aryleneethynylene)s (PAEs) were synthesized to investigate the solvent‐induced π‐stacked self‐assembly. These PAE backbones are composed of fluorenylene and phenylene units, which are alternatively linked by ethynylene bonds. UV–vis absorption and photoluminescence spectra were used to study their conformational changes as solvent was gradually changed from MeOH to H2O. In pure water, with gradually increased meta‐phenylene content (0, 50, and 100%), they underwent a gradual transition process of conformation from disordered aggregate structure to helix structure, which was not compactly folded. Moreover, the polymer with an ammonium‐functionalized side chain on the meta‐phenylene unit appeared to adopt a more incompact or extended helix conformation than the corresponding one without this side chain. Furthermore, the conformational changes of these cationic PAEs in H2O were used to study their effects on biological detection. Rubredoxin (Rd), a type of anionic iron–sulfur‐based electron transfer protein, was chosen to act as biological analyte in the fluorescence quenching experiments of these polymers. Preliminary results suggest that they all exhibit amplified fluorescence quenching, and that the polymer with more features of helix conformation tends to be quenched by Rd more efficiently. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5424–5437, 2006  相似文献   

20.
The synthesis, thermal characterization, and oxygen index of aromatic polyamides varying with polymeric unit linkage positions (meta and/or para units) and halogen substitution have been reported. It has been found that polyamides containing para units are more thermal stable than those containing meta units. There is no significant effect of the main chain structure studied here on either the pyrolysis pathways or flammability of similarly halogen substituted polyamides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号