首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A scheme is developed to study numerical solution of the space- and time-fractional Burgers equations under initial conditions by the homotopy analysis method. The fractional derivatives are considered in the Caputo sense. The solutions are given in the form of series with easily computable terms. Numerical solutions are calculated for the fractional Burgers equation to show the nature of solution as the fractional derivative parameter is changed.  相似文献   

2.
The fractional derivatives in the sense of Caputo and the homotopy analysis method are used to construct an approximate solution for the nonlinear space-time fractional derivatives Klein-Gordon equation. The numerical results show that the approaches are easy to implement and accurate when applied to the nonlinear space-time fractional derivatives KleinGordon equation. This method introduces a promising tool for solving many space-time fractional partial differential equations. This method is efficient and powerful in solving wide classes of nonlinear evolution fractional order equations.  相似文献   

3.
吴国成 《中国物理 B》2012,(12):118-122
<正>The variational iteration method is successfully extended to the case of solving fractional differential equations, and the Lagrange multiplier of the method is identified in a more accurate way.Some diffusion models with fractional derivatives are investigated analytically,and the results show the efficiency of the new Lagrange multiplier for fractional differential equations of arbitrary order.  相似文献   

4.
In this paper, the fractional auxiliary sub-equation expansion method is proposed to solve nonlinear fractional differential equations. To illustrate the effectiveness of the method, we discuss the space-time fractional Kd V equation, the space-time fractional RLW equation, the space-time fractional Boussinesq equation, and the(3+1)-spacetime fractional ZK equation. The solutions are expressed in terms of fractional hyperbolic and fractional trigonometric functions. These solutions are useful to understand the mechanisms of the complicated nonlinear physical phenomena and fractional differential equations. Among these solutions, some are found for the first time. The analytical solution of homogenous linear FDEs with constant coefficients are obtained by using the series and the Mittag–Leffler function methods. The obtained results recover the well-know solutions when α = 1.  相似文献   

5.
In this paper, we mainly study the time-space fractional strain wave equation in microstructured solids. He’s variational method, combined with the two-scale transform are implemented to seek the solitary and periodic wave solutions of the time-space strain wave equation. The main advantage of the variational method is that it can reduce the order of the differential equation, thus simplifying the equation, making the solving process more intuitive and avoiding the tedious solving process.Finally, the numerical results are shown in the form of 3D and 2D graphs to prove the applicability and effectiveness of the method. The obtained results in this work are expected to shed a bright light on the study of fractional nonlinear partial differential equations in physics.  相似文献   

6.
The purpose of the paper is to present analytical and numerical solutions of a degenerate parabolic equation with time-fractional derivatives arising in the spatial difusion of biological populations.The homotopy–perturbation method is employed for solving this class of equations,and the time-fractional derivatives are described in the sense of Caputo.Comparisons are made with those derived by Adomian’s decomposition method,revealing that the homotopy perturbation method is more accurate and convenient than the Adomian’s decomposition method.Furthermore,the results reveal that the approximate solution continuously depends on the time-fractional derivative and the proposed method incorporating the Caputo derivatives is a powerful and efcient technique for solving the fractional diferential equations without requiring linearization or restrictive assumptions.The basis ideas presented in the paper can be further applied to solve other similar fractional partial diferential equations.  相似文献   

7.
In this paper, new exact solutions of the time fractional KdV–Khokhlov–Zabolotskaya–Kuznetsov(KdV–KZK) equation are obtained by the classical Kudryashov method and modified Kudryashov method respectively. For this purpose, the modified Riemann–Liouville derivative is used to convert the nonlinear time fractional KdV–KZK equation into the nonlinear ordinary differential equation. In the present analysis, the classical Kudryashov method and modified Kudryashov method are both used successively to compute the analytical solutions of the time fractional KdV–KZK equation. As a result, new exact solutions involving the symmetrical Fibonacci function, hyperbolic function and exponential function are obtained for the first time. The methods under consideration are reliable and efficient, and can be used as an alternative to establish new exact solutions of different types of fractional differential equations arising from mathematical physics.The obtained results are exhibited graphically in order to demonstrate the efficiencies and applicabilities of these proposed methods of solving the nonlinear time fractional KdV–KZK equation.  相似文献   

8.
张世华  陈本永  傅景礼 《中国物理 B》2012,21(10):100202-100202
This paper presents extensions to the traditional calculus of variations for mechanico-electrical systems containing fractional derivatives.The Euler-Lagrange equations and the Hamilton formalism of the mechanico-electrical systems with fractional derivatives are established.The definition and the criteria for the fractional generalized Noether quasisymmetry are presented.Furthermore,the fractional Noether theorem and conseved quantities of the systems are obtained by virtue of the invariance of the Hamiltonian action under the infinitesimal transformations.An example is presented to illustrate the application of the results.  相似文献   

9.
牛玉军  王兴元  年福忠  王明军 《中国物理 B》2010,19(12):120507-120507
Based on the stability theory of the fractional order system,the dynamic behaviours of a new fractional order system are investigated theoretically.The lowest order we found to have chaos in the new three-dimensional system is 2.46,and the period routes to chaos in the new fractional order system are also found.The effectiveness of our analysis results is further verified by numerical simulations and positive largest Lyapunov exponent.Furthermore,a nonlinear feedback controller is designed to achieve the generalized projective synchronization of the fractional order chaotic system,and its validity is proved by Laplace transformation theory.  相似文献   

10.
This article is concerned with the effect of rotation on the general model of the equations of the generalized thermoe- lasticity for a homogeneous isotropic elastic half-space solid, whose surface is subjected to a Mode-I crack problem. The fractional order theory of thermoelasticity is used to obtain the analytical solutions for displacement components, force stresses, and temperature. The boundary of the crack is subjected to a prescribed stress distribution and temperature. The normal mode analysis technique is used to solve the resulting non-dimensional coupled governing equations of the problem. The variations of the considered variables with the horizontal distance are illustrated graphically. Some particular cases are also discussed in the context of the problem. Effects of the fractional parameter, reinforcement, and rotation on the varia- tions of different field quantities inside the elastic medium are analyzed graphically. Comparisons are made between the results in the presence and those in the absence of fiber-reinforcing, rotating and fractional parameters.  相似文献   

11.
The KdV–Burgers equation for dust acoustic waves in unmagnetized plasma having electrons, singly charged nonthermal ions, and hot and cold dust species is derived using the reductive perturbation method. The Boltzmann distribution is used for electrons in the presence of the cold(hot) dust viscosity coefficients. The semi-inverse method and Agrawal variational technique are applied to formulate the space–time fractional KdV–Burgers equation which is solved using the fractional sub-equation method. The effect of the fractional parameter on the behavior of the dust acoustic shock waves in the dusty plasma is investigated.  相似文献   

12.
This study is devoted to giving an analytical approach to exact solutions for the Wick-type stochastic spacetime fractional KdV equation. By means of Hermite transform, white noise theory, and the fractional Riccati equation method, we derive white noise functional solutions for the Wick-type stochastic space-time fractional KdV equations. Exact traveling wave solutions for the variable coefficients space-time fractional KdV equations are given by using the fractional Riccati equation method. The obtained results include soliton-like, periodic, and rational solutions.  相似文献   

13.
王发强  马西奎 《中国物理 B》2013,22(3):30506-030506
Based on the fact that the real inductor and the real capacitor are fractional order in nature and the fractional calculus,the transfer function modeling and analysis of the open-loop Buck converter in a continuous conduction mode(CCM) operation are carried out in this paper.The fractional order small signal model and the corresponding equivalent circuit of the open-loop Buck converter in a CCM operation are presented.The transfer functions from the input voltage to the output voltage,from the input voltage to the inductor current,from the duty cycle to the output voltage,from the duty cycle to the inductor current,and the output impedance of the open-loop Buck converter in CCM operation are derived,and their bode diagrams and step responses are calculated,respectively.It is found that all the derived fractional order transfer functions of the system are influenced by the fractional orders of the inductor and the capacitor.Finally,the realization of the fractional order inductor and the fractional order capacitor is designed,and the corresponding PSIM circuit simulation results of the open-loop Buck converter in CCM operation are given to confirm the correctness of the derivations and the theoretical analysis.  相似文献   

14.
张毅 《中国物理 B》2012,21(8):84502-084502
In this paper,we focus on studying the fractional variational principle and the differential equations of motion for a fractional mechanical system.A combined Riemann-Liouville fractional derivative operator is defined,and a fractional Hamilton principle under this definition is established.The fractional Lagrange equations and the fractional Hamilton canonical equations are derived from the fractional Hamilton principle.A number of special cases are given,showing the universality of our conclusions.At the end of the paper,an example is given to illustrate the application of the results.  相似文献   

15.
齐冬莲  杨捷  张建良 《中国物理 B》2010,19(10):100506-100506
This paper studies the stability of the fractional order unified chaotic system with sliding mode control theory. The sliding manifold is constructed by the definition of fractional order derivative and integral for the fractional order unified chaotic system. By the existing proof of sliding manifold, the sliding mode controller is designed. To improve the convergence rate, the equivalent controller includes two parts: the continuous part and switching part. With Gronwall’s inequality and the boundness of chaotic attractor, the finite stabilization of the fractional order unified chaotic system is proved, and the controlling parameters can be obtained. Simulation results are made to verify the effectiveness of this method.  相似文献   

16.
It is well-known that reaction–diffusion systems are used to describe the pattern formation models. In this paper,we will investigate the pattern formation generated by the fractional reaction–diffusion systems. We first explore the mathematical mechanism of the pattern by applying the linear stability analysis for the fractional Gierer–Meinhardt system.Then, an efficient high-precision numerical scheme is used in the numerical simulation. The proposed method is based on an exponential time differencing Runge–Kutta method in temporal direction and a Fourier spectral method in spatial direction. This method has the advantages of high precision, better stability, and less storage. Numerical simulations show that the system control parameters and fractional order exponent have decisive influence on the generation of patterns. Our numerical results verify our theoretical results.  相似文献   

17.
We present a new fractional-order resistor-capacitor controller and a novel control method based on the fractional- order controller to control an arbitrary three-dimensional fractional chaotic system. The proposed control method is simple, robust, and theoretically rigorous, and its anti-noise performance is satisfactory. Numerical simulations are given for several fractional chaotic systems to verify the effectiveness and the universality of the proposed control method.  相似文献   

18.
In this paper, the local fractional natural decomposition method(LFNDM) is used for solving a local fractional Poisson equation. The local fractional Poisson equation plays a significant role in the study of a potential field due to a fixed electric charge or mass density distribution. Numerical examples with computer simulations are presented in this paper. The obtained results show that LFNDM is effective and convenient for application.  相似文献   

19.
The ion-acoustic solitary wave in collisionless unmagnetized plasma consisting of warm ions-fluid and isothermal electrons is studied using the time fractional KdV equation. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation for small but finite amplitude ion-acoustic wave in warm plasma. The Lagrangian of the time fractional KdV equation is used in a similar form to the Lagrangian of the regular KdV equation with fractional derivative for the time differentiation. The variation of the functional of this Lagrangian leads to the Euler-Lagrange equation that gives the time fractional KdV equation. The variational-iteration method is used to solve the derived time fractional KdV equation. The calculations of the solution are carried out for different values of the time fractional order. These calculations show that the time fractional can be used to modulate the electrostatic potential wave instead of adding a higher order dissipation term to the KdV equation. The results of the present investigation may be applicable to some plasma environments,such as the ionosphere plasma.  相似文献   

20.
Properties of cylindrical electron acoustic solitons are studied in vortex plasmas.The modified cylindrical Korteweg-de Vries(KdV) equation is acquired and converted into the time fractional cylindrical modified KdV equation by Agrawal's analysis.Via the Adomian decomposition method,a cylindrical soliton solution to the equation is obtained.The cylindrical time fractional effect on the wave properties is investigated.Further,the increase of the fractional order of time a and hot to trapped electrons temperature β are minimized in both solitary width and amplitude.These influences on the structures of the soliton may be an alternative to the use of higher order perturbation analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号