首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
In this paper, applying the method of coordinate coherent states to describe a noncommutative model of Vaidya black holes leads to an exact (t - r) dependence of solution in terms of the noncommutative parameter σ. In this setup, there Js no black hole remnant at long times.  相似文献   

2.
In this paper, we apply the tunneling of massive particle through the quantum horizon of a Schwarzschild black hole in noncommutative spaeetime. The tunneling effects lead to modified Hawking radiation due to inclusion of back-reaction effects. Our calculations show also that noncommutativity effects cause the further modifications to the thermodynamical relations in black hole. We calculate the emission rate of the massive particles' tunneling from a Schwarzschild black hole which is modified on account of noncommutativity influences. The issues of information loss and possible correlations between emitted particles are discussed. Unfortunately even by considering noneommutativity view point, there is no correlation between different modes of evaporation at least at late-time. Nevertheless, as a result of spacetime noncommutativity, information may be conserved by a stable black hole remnant.  相似文献   

3.
In order to further explore the effects of non-Gaussian smeared mass distribution on the thermodynamical properties of noncommutative black holes, we consider noncommutative black holes based on Maxwell-Boltzmann smeared mass distribution in (2+1)-dimensional spacetime. The thermodynamical properties of the black holes are investigated, including Hawking temperature, heat capacity, entropy and free energy. We find that multiple black holes with the same temperature do not exist, while there exists a possible decay of the noncommutative black hole based on Maxwell-Boltzmann smeared mass distribution into the rotating (commutative) BTZ black hole.  相似文献   

4.
Recently, there has been much attention devoted to resolving the quantum corrections to the Bekenstein- Hawking black hole entropy. The different correction leading terms are obtained by the different methods. In this paper, we calculate the correction to SAdS5 black hole thermodynamic quantity due to the generalized uncertainty principle. Furthermore we derive that the black hole entropy obeys Bekenstein Hawking area theorem. The entropy has infinite correction terms. And every term is finite and calculable. The corrected Cardy-Vedinde formula is derived. In our calculation, Bekenstein Hawking area theorem still holds after considering the generalized uncertainty principle. We have not introduced any hypothesis. The calculation is simple. Physics meaning is clear. We note that our results are quite general. It is not only valid for four-dimensional spacetime but also for higher-dimensional SAdS spacetime.  相似文献   

5.
6.
Considering corrections to all orders in Planck length on the quantum state density from a generalized uncertainty principle (GUP), we calculate the statistical entropy of the Bose field and Fermi field on the background of the four-dimensional spherically symmetric black holes without any cutoff. It is obtained that the statistical entropy is directly proportional to the area of horizon.  相似文献   

7.
Gamal  G.L.  Nashed 《理论物理通讯》2010,(10):625-629
Two spherically symmetric non-singular black hole solutions in Moiler tetrad theory of gravitation have been obtained. Although the two solutions have the same form of metric (spherically symmetric nonsingular black hole), their energy contents are different. We use another method given by Gibbons and Hawking to calculate the energy content of these solutions. We also obtained different value of energy. Study the requirements of a satisfactory energymomentum complex given by Moiler we find that the second solution, which behaves as 1/√r, is not transformed as a four-vector under Lorentz transformation.  相似文献   

8.
First we calculate the Wigner phase-space distribution function for the Klein-Gordan Landau problem on a commmutative space. Then we study the modifications introduced by the coordinate-coordinate noncommuting and momentum-momentum noncommuting, namely, by using a generalized Bopp's shift method we construct the Wigner function for the Klein-Gordan Landau problem both on a noncommutative space (NCS) and a noncommutative phase space (NCPS).  相似文献   

9.
Recent research shows that Hawking radiation from black hole horizon can be treated as a quantum tunneling process, and fermions tunneling method can successfully recover Hawking temperature. In this tunneling framework, choosing a set of appropriate matrices γ^μ is an important technique for fermions tunneling method. In this paper, motivated by Kerner and Man's fermions tunneling method of 4 dimension black holes, we further improve the analysis to investigate Hawking tunneling radiation from a rotating charged black hole in 5-dimensional gauged supergravity by constructing a set of appropriate matrices γ^μ for general covariant Dirac equation. Finally, the expected Hawking temperature of the black hole is correctly recovered, which takes the same form as that obtained by other methods. This method is universal, and can also be directly extend to the other different-type 5-dimensional charged black holes.  相似文献   

10.
The Pv criticality and phase transition in the extended phase space of a noncommutative geometry inspired Reissner–Nordström (RN) black hole in Anti-de Sitter (AdS) space-time are studied, where the cosmological constant appears as a dynamical pressure and its conjugate quantity is thermodynamic volume of the black hole. It is found that the Pv criticality and the small black hole/large black hole phase transition appear for the noncommutative RN-AdS black hole. Numerical calculations indicate that the noncommutative parameter affects the phase transition as well as the critical temperature, horizon radius, pressure and ratio. The critical ratio is no longer universal, which is different from the result in the van de Waals liquid–gas system. The nature of phase transition at the critical point is also discussed. Especially, for the noncommutative geometry inspired RN-AdS black hole, a new thermodynamic quantity \(\varPsi \) conjugate to the noncommutative parameter \(\theta \) has to be defined further, which is required for consistency of both the first law of thermodynamics and the corresponding Smarr relation.  相似文献   

11.
Hawking radiation from cosmological horizon and event horizon of the Reissner-Nordstrom de Sitter black hole with a global monopole is studied via a new method that was propounded by Robinson and Wilzek and elaborated by Banerjee and Kulkarni. The results show that the gauge current and energy-momentum tensor fluxes, which required keeping gauge covariance and general coordinate invariance at the quantum level in the effective field theory, are exactly equivalent to those of Hawking radiation from the event horizon and the cosmological horizon, respectively.  相似文献   

12.
Theories with ingredients like the Higgs mechanism, gravitons, and inflaton fields rejuvenate the idea that relativistic kinematics is dynamically emergent. Eternal inflation treats the Hubble constant H as depending on location. Microscopic dynamics implies that H is over much smaller lengths than pocket universes to be understood as a local space reproduction rate. We illustrate this via discussing that even exponential inflation in TeV-gravity is slow on the relevant time scale. In our on small scales inhomogeneous cosmos, a reproduction rate H depends on position. We therefore discuss Einstein-Strauss vacuoles and a Lindquist-Wheeler like lattice to connect the local rate properly with the scaling of an expanding cosmos. Consistency allows H to locally depend on Weyl curvature similar to vacuum polarization. We derive a proportionality constant known from Kepler's third law and discuss the implications for the finiteness of the cosmological constant.  相似文献   

13.
By extending the Parikh-Wilczek tunneling framework, we investigate the tunneling radiation of uncharged massless particles from a static spherically symmetric black hole surrounded by quintessence. The results are consistent with an underlying unitary theory.  相似文献   

14.
We discuss the entropy of the Garfinkle-Horowitz-Strominger dilaton black hole by using the thin film brick-wall model, and the entropy obtained is proportional to the horizon area of the black hole confirming the Bekenstein-Hawking's area-entropy formula. Then, by comparing with the original brick-wall method, we find that the result obtained by the thin film method is more reasonable avoiding some drawbacks, such as little mass approximation, neglecting logarithm term, and taking the term L^3 as a contribution of the vacuum surrounding the black hole, and the physical meaning of the entropy is more clearer.  相似文献   

15.
A method for calculating the radiation spectrum of an arbitrary black holes was recently proposed by Ma et al., [Europhys. Lett. 122 (2018) 30001] in which a non-thermal spectrum of a black hole can be obtained from its entropy using an approach based on canonical typicality. The non-thermal spectrum of a black hole enables a nonzero correlation between the black hole and its radiation, which can ensure that information is conserved during black hole evaporation. In this paper, by using the Kantowski-Sachs metric and Feynman-Hibbs procedure, the entropy of a noncommutative quantum black hole is calculated based on the Wheeler-DeWitt equation. Then, the radiation spectrum of the noncommutative quantum black hole is studied based on canonical typicality method. At last, the correlation between the radiation spectra is calculated. It is shown that the noncommutative effect increases the correlation among radiation and the information remains conserved for noncommutative quantum black holes.  相似文献   

16.
In this paper, massive particles' Hawking radiation via tunneling from cosmological horizon of a (3+1)- dimensional de Sitter spacetime is investigated. According to Parikh's theory, when a particle tunnels across the cosmological horizon, the effective geometry is Schwarzschild de Sitter spacetime. In this effective spacetime, a massive particle can be treated as a de Broglie S-wave. WKB method is used. The emission spectrum is obtained, and it takes the same functional form as that of massless particles.  相似文献   

17.
Deformation quantization is a powerful tool to deal with systems in noncommutative space to get their energy spectra and corresponding Wigner functions, especially for the ease of both coordinates and momenta being noneommutative. In order to simplify solutions of the relevant .-genvalue equation, we introduce a new kind of Seiberg Witten-like map to change the variables of the noncommutative phase space into ones of a commutative phase space, and demonstrate its role via an example of two-dimensional oscillator with both kinetic and elastic couplings in the noneommutative phase space.  相似文献   

18.
On the basis of a charged BTZ black hole, we add an extra term in the metric function to describe the contribution from nonlinear electrodynamics. In this way we artificially construct a (2 + 1)-dimensional black hole in general relativity coupled with a nonlinear electrodynamics source. The thermodynamic quantities and Smarr formula are derived. It is found that this black hole has TS criticality like that of an RN-AdS black hole. Further modifying the metric function, we obtain a (2 + 1)-dimensional black hole possessing PV critical behaviors similar to that of van der Waals fluid. To our knowledge, this is the first example of (2 + 1)-dimensional black holes having this kind of critical behavior.  相似文献   

19.
The generalized Thirring model with impurity coupling is defined on two-dimensional noncommutative space-time, a modified propagator and free energy are derived by means of functional integrals method. Moreover, quantum fluctuations and excitation energies are calculated on two-dimensional black hole and soliton background.  相似文献   

20.
It has been shown that non-rotating black holes Recently study showed that thermal fluctuations would give in three or four dimensions possess a canonical entropy. rise to logarithmic corrections to Bekenstein Hawking entropy in area with a model-dependent uncertain coefficient. In this paper, the thermal fluctuations on Bekenstein-Hawking entropy in three-dimensional AdS black holes, Schwarzschild-de Sitter space and Kerr-de Sitter (KdS) spacetime with J = 0 will be considered based on a uniformly spaced area spectrum approach. Our conclusion shows that there is the same correction form in all cases we considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号