首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The boundary layer on a semi-infinite triangular body of power-law shape is calculated for viscous interaction with an external hypersonic flow. The results of calculating the characteristics of the three-dimensional boundary layer are presented. The formation of secondary return flows and zones of intensified heat transfer on the surface of the body in the neighborhood of lines of flow divergence is noted.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 77–82, January–February, 1988.  相似文献   

2.
When a gas flows with hypersonic velocity over a slender blunt body, the bow shock induces large entropy gradients and vorticity near the wall in the disturbed flow region (in the high-entropy layer) [1]. The boundary layer on the body develops in an essentially inhomogeneous inviscid flow, so that it is necessary to take into account the difference between the values of the gas parameters on the outer edge of the boundary layer and their values on the wall in the inviscid flow. This vortex interaction is usually accompanied by a growth in the frictional stress and heat flux at the wall [2, 3]. In three-dimensional flows in which the spreading of the gas on the windward sections of the body causes the high-entropy layer to become narrower, the vortex interaction can be expected to be particularly important. The first investigations in this direction [4–6] studied the attachment lines of a three-dimensional boundary layer. The method proposed in the present paper for calculating the heat transfer generalizes the approach realized in [5] for the attachment lines and makes it possible to take into account this effect on the complete surface of a blunt body for three-dimensional laminar, transition, or turbulent flow regime in the boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 80–87, January–February, 1981.  相似文献   

3.
Three-dimensional compressible gas flow past an arbitrary model body at large angles of attack is analyzed in the framework of the boundary layer theory with allowance for heat transfer. The equations of a three-dimensional turbulent boundary layer are solved using computer codes, the data on the external inviscid flow, and the body geometry.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 55–66, May–June, 1995.  相似文献   

4.
The difficulties and clumsiness of problems of calculating the heat transfer distribution over the surface of a body in a three-dimensional flow are well known. It is shown that this problem can be considerably simplified where the influence of the three-dimensionality of the flow, which in certain applications it is important to take into account, is only weak. In this case the three-dimensional problem can be reduced to a set of two-dimensional problems along the lines of meridional sections of the body. This has been demonstrated in detail with reference to the method of effective length or local similarity, which is widely used in engineering practice and is particularly justified in the the case of turbulent heat transfer law. However, in the three-dimensional case it is complicated by the need to calculate the distribution of the streamlines over the surface of the body [1–4]. In the presence of slight asymmetry of the flow the problem can be substantially simplified, mainly as a result of the demonstrated possibility of replacing (with quadratic accuracy) the streamlines by the lines of meridional sections. The possibility of an independent solution of the exact boundary layer equations along each meridional plane is demonstrated for the above-mentioned approximation (rule of meridional sections).Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 67–73, May–June, 1986.  相似文献   

5.
Self-similar solutions of the equations of a three-dimensional laminar boundary layer are of interest from two points of view. In the first place, they can be used to construct approximate calculating methods, making it possible to analyze several variants and to consider complex flows, in which it is impossible to neglect the interaction between the boundary layer and the external flow (for example, in the region of hypersonic interaction [1–3]). In the second place, the analysis of self-similar solutions permits clarifying the effect of individual parameters on one or another characteristic of the boundary layer and representing this effect in predictable form. One of the principal characteristics of a three-dimensional boundary layer, as also of a two-dimensional, is the coefficient of regeneration of the enthalpy. The value of this coefficient is needed for determining the temperature of a thermally insulated surface, as well as for finiing the real temperature (or enthalpy) head, which determines the value of the heat flux from a heated gas to the surface of the body around which the flow takes place. The article presents the results of calculations of the coefficient of regeneration of the enthalpy for locally self-similar solutions of the equations of a three-dimensional boundary layer, forming with flow around a cylindrical thermally insulated surface at an angle. It is clarified that the dependence of the coefficient of regeneration of the enthalpy on the determining parameters is not always continuous.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 60–63, January–February, 1973.  相似文献   

6.
The velocity and heat transfer fields near a vertical permeable surface with simultaneous convection are investigated. A solution is found for the boundary layer equations with known laws of surface temperature and flow velocity change. The transformed boundary layer equations contain the parameter G/R2, which determines the effect of free convection on friction and heat transfer for constrained motion. Calculations of friction and heat transfer as functions of draft (suction) with simultaneous convection are presented.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 2, pp. 96–100, March–April, 1973.  相似文献   

7.
A mathematical model of the hypersonic steady gas flow over the stagnation zone of an axisymmetric blunt body with given two-phase injection from the surface is proposed. The two-continuum model of a dusty gas [3] is used for describing the flow in the region of the wall. The problem is solved in the boundary layer and thin viscous shock layer approximations. On the basis of the numerical calculations the distribution of the parameters of the carrier and dispersed phases near the axis of symmetry is obtained. The similarity parameters determining the convective heat transfer are found. The stagnation point heat fluxes with and without particles are compared. The range of parameters on which particles can significantly reduce the heat transfer is determined.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.4, pp. 60–66, July–August, 1992.  相似文献   

8.
The asymptotic method of outer and inner expansions is used to analyze the flow of a multicomponent gas in a three-dimensional boundary layer on a smooth blunt body with large injection. Asymptotic expressions are derived for the friction coefficients, the heat and diffusion fluxes of the components on the surface of the body, and the velocity, temperature, and concentration profiles of the components across the layer of injected gases. It is shown that with large injection the limiting (bottom) streamlines on the surface of the body coincide in the first approximation with the vectorial lines of the pressure gradient.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 47–56, March–April, 1975.The author is indebted to G. A. Tirskii for a discussion of the work.  相似文献   

9.
The influence of the second-approximation effects of laminar boundary layer theory on the heat transfer in three-dimensional hypersonic flow over blunt cones with a large aspect ratio is investigated numerically.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 57–64, March–April, 1995.  相似文献   

10.
V. I. Nosik 《Fluid Dynamics》1995,30(4):629-637
The effect of nonequilibrium non-Arrhenius dissociation kinetics, which cannot be reduced to two-temperature kinetics, on the microparameter distribution in a boundary layer and, in particular, on the heat transfer to the surface of the body is considered with reference to the flow of a binary mixture of nitrogen molecules and nitrogen atoms in the neighborhood of the stagnation point on a blunt body.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 4, pp. 168–178, July–August, 1995.  相似文献   

11.
The problem of interaction of gas-dust flows with solid surfaces arose in connection with the study of the motion of aircraft in a dusty atmosphere [1–2], the motion of a gas suspension in power generators, and in a number of other applications [3]. The presence of a disperse admixture may lead to a significant increase in the heat fluxes [4] and to erosion of the surface [5]. These phenomena are due to the joint influence of several factors — the change in the structure of the carrier-phase boundary layer due to the presence of the particles, collisions of the particles with the surface, roughness of the ablating surface, and so forth. This paper continues an investigation begun earlier [6–7] into the influence of particles on the structure of the dynamical and thermal two-phase boundary layer formed around a blunt body in a flow. The model of the dusty gas [8] has an incompressible carrier phase. The method of matched asymptotic expansions [9] is used to obtain the equations of the two-phase boundary layer. In the frame-work of the refined classification made by Stulov [6], it is shown that the form of the boundary layer equations is different in the presence and absence of inertial precipitation of the particles. The equations are solved numerically in the neighborhood of the stagnation point of the blunt body. The temperature and phase velocity distributions in the boundary layer, and also the friction coefficients and the heat transfer of the carrier phase are found for a wide range of the determining parameters. In the case of an admixture of low-inertia particles that are not precipitated on the body, it is shown that even when the mass concentration of the particles in the undisturbed flow is small their accumulation in the boundary layer can lead to a sharp increase in the thermal fluxes at the stagnation point.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 99–107, September–October, 1985.I thank V. P. Strulov for a discussion.  相似文献   

12.
Numerical and approximate analytic methods are used to investigate three-dimensional laminar boundary layers on blunt bodies with permeable surface in a supersonic gas stream. In the first approximation of the integral method of successive approximation an analytic solution is obtained to the problem for an impermeable surface, small values of the blowing parameter, and arbitrary suction. For large parameters of the blowing (or suction), whose velocity vector in the general case is directed at a certain angle to the vector of the outer normal to the body, asymptotic expressions are derived for the components of the frictional stress and the heat flux. A numerical solution is obtained to the equations of the three-dimensional boundary layer in a wide range of variation of the blowing (or suction) parameter. The accuracy and region of applicability of the analytic solutions is estimated by comparison with the numerical solutions. On the basis of the solutions obtained in the present paper and the work of other authors an expression is proposed for calculating the heat fluxes to a perfectly catalytic surface of a body in a three-dimensional supersonic flow of dissociated or ionized air. The present paper continues earlier work of the authors [1, 2] on boundary layers in the neighborhood of a symmetry plane and on sweptback wings of infinite span.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 49–58, May–June, 1982.  相似文献   

13.
The results of an experimental and numerical investigation of the heat transfer between a subsonic jet of dissociated nitrogen and a titanium surface, through which molecular oxygen is blown into the jet, are presented. It is established that in the nonequilibrium boundary layer regime the dependence of the heat flux on the injected oxygen flow rate is nonmonotonic. At a certain flow rate the heat transfer to the titanium surface reaches a maximum that considerably exceeds (by 20%) the heat transfer to an impermeable wall. The observed increase in heat transfer in the presence of injection is attributed to the interaction of the gas-phase exchange reactions and the recombination of atoms on the titanium surface, which has sharply different catalytic properties with respect to the recombination of nitrogen and oxygen atoms.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 148–155, July–August, 1991.  相似文献   

14.
In the framework of the approximation of local similarity to the Navier-Stokes equations, an investigation is made of the axisymmetric flow of homogeneous gas in a hypersonic shock layer, this including the region of transition through the shock wave. Boundary conditions, which take into account blowing of gas, are specified on the surface of the body and in the undisturbed flow. A numerical solution to the problem is obtained in a wide range of variation of the Reynolds number and the blowing parameter. Expressions are found for the dependences on the blowing parameter usually employed in boundary layer theory of the coefficients of friction and heat transfer on the surface of the body, which are divided by their values obtained for blowing parameter equal to zero. It is shown that these dependences are universal and the same as the dependences obtained from the solution of the equations of a hypersonic viscous shock layer with modified Rankin-Hugoniot relations across the shock wave and from the solution of the boundary layer equations.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 199–202, January–February, 1980.  相似文献   

15.
The article discusses the flow of a gas at the blade rim of an axial turbine, consisting of an external steady-state continuous flow of an ideal compressible liquid and a three-dimensional turbulent boundary layer of a compressible liquid at the end surfaces of the rim, averaged in a peripheral direction. It presents an example of a calculation of flow in fixed blades, with a different form of the meridional cross section. In a flow through the rim of a turbine machine between the convex and concave surfaces of adjacent blades there arises a transverse gradient of the static pressure. At the end surface in the boundary layer the lines of the flow are shifted toward the convex side of the profile, and a secondary transverse flow of the liquid arises [1–3]. The article discusses the following: an external two-dimensional steady-state adiabatic flow of an ideal compressible liquid at the surface S2, which can be taken as the mean surface of the interblade channel, with boundary lines at the peripheral and root end surfaces of the rim; a two-dimensional steady-state adiabatic flow of an ideal compressible liquid at the end surfaces of the rim between the convex and concave sides of the profiles [3, 4]; and a three-dimensional turbulent boundary layer, averaged in a peripheral direction at the end surfaces of the blade rim. The averaged boundary layer is calculated along one coordinate line s, and a simplified model of the quasi-three-dimensional flow is used. The coefficients of friction and heat transfer, and the inclination of the bottom flow lines are averaged.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 22–31, May–June, 1975.The author thanks G. Yu. Stepanov for posing the problem and evaluating the results.  相似文献   

16.
An asymptotic model of the flow in the laminar boundary layer of a gas-evaporating droplet mixture is constructed within the framework of the two-continuum approximation. The case of evaporation of the droplets into an atmosphere of their own vapor is examined in detail with reference to the example of longitudinal flow over a hot flat plate. Numerical and asymptotic solutions of the boundary layer equations constructed are found for a number of limiting situations (low droplet concentration, no droplet deposition, significant droplet deposition). The development of the flow with respect to the longitudinal coordinate is studied and it is shown that in the absence of droplet deposition a region of pure vapor may be formed near the surface. Similarity criteria are established and the mechanism of surface heat transfer enhancement is studied for a low evaporating droplet concentration in the boundary layer. In the inertial deposition regime the results of calculating the integral heat transfer coefficient are found to correspond with the experimental data [1].Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.3, pp. 42–50, May–June, 1992.  相似文献   

17.
Some results of experimental studies are shown concerning subsonic flow in separation zones of three-dimensional turbulent boundary layers formed in front of cylindrical weirs and rectangular parallelepipeds or dashboards. The width to height ratio of the weirs was varied from 0.25 to 24, and the boundary layer thickness to weir height ratio at separation was varied from 0.2 to 2.0. Flow patterns are shown along with the effects of the setup ge-ometry, of the weir width to height ratio, of the boundary layer parameters, and of the Euler and Reynolds numbers on the flow pattern and on the coordinates of characteristic points in the separation zone. Data are furnished for determining the dimensions of three-dimensional separation zones in front of weirs. The flow and the heat transfer in three-dimensional separation zones at subsonic velocities have not yet been explored adequately. The separation data published in [1, 2, 3] are not sufficient for determining the flow pattern, the static pressure distribution, and the characteristic dimensions of a separation zone — all of which are needed for calculating the heat transfer in the separation zone [4].Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 1, pp. 50–54, January–February, 1972.The authors thank V. S. Avduevskii for reviewing the results.  相似文献   

18.
A study is made of plane laminar Couette flow, in which foreign particles are injected through the upper boundary. The effect of the particles on friction and heat transfer is analyzed on the basis of the equations of two-fluid theory. A two-phase boundary layer on a plate has been considered in [1, 2] with the effect of the particles on the gas flow field neglected. A solution has been obtained in [3] for a laminar boundary layer on a plate with allowance for the dynamic and thermal effects of the particles on the gas parameters. There are also solutions for the case of the impulsive motion of a plate in a two-phase medium [4–6], and local rotation of the particles is taken into account in [5, 6]. The simplest model accounting for the effect of the particles on friction and heat transfer for the general case, when the particles are not in equilibrium with the gas at the outer edge of the boundary layer, is Couette flow. This type of flow with particle injection and a fixed surface has been considered in [7] under the assumptions of constant gas viscosity and the simplest drag and heat-transfer law. A solution for an accelerated Couette flow without particle injection and with a wall has been obtained in [6]. In the present paper fairly general assumptions are used to obtain a numerical solution of the problem of two-phase Couette flow with particle injection, and simple formulas useful for estimating the effect of the particles on friction and heat transfer are also obtained.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 42–46, May–June, 1976.  相似文献   

19.
Results are presented of experimental investigations of heat transfer in the neighborhood of the stagnation point in flow of a turbulent gas over bodies. It is assumed that the outer flow is capable of rendering the boundary layer turbulent over the whole body surface, i.e., the hypothesis is invoked that there is a turbulent stagnation point. Using the method of integral relations [1] and the flat plate heat-transfer law, transformed in such a way as to satisfy the heat-transfer conditions at the stagnation point, simple formulas have been obtained for calculating the heat flux.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 4, pp. 177–181, July–August, 1975.  相似文献   

20.
Analytical and numerical methods are used to investigate a three-dimensional laminar boundary layer near symmetry planes of blunt bodies in supersonic gas flows. In the first approximation of an integral method of successive approximation an analytic solution to the problem is obtained that is valid for an impermeable surface, for small values of the blowing parameter, and arbitrary values of the suction parameter. An asymptotic solution is obtained for large values of the blowing or suction parameters in the case when the velocity vector of the blown gas makes an acute angle with the velocity vector of the external flow on the surface of the body. Some results are given of the numerical solution of the problem for bodies of different shapes and a wide range of angles of attack and blowing and suction parameters. The analytic and numerical solutions are compared and the region of applicability of the analytic expressions is estimated. On the basis of the solutions obtained in the present work and that of other authors, a formula is proposed for calculating the heat fluxes to a perfectly catalytic surface at a symmetry plane of blunt bodies in a supersonic flow of dissociated and ionized air at different angles of attack. Flow near symmetry planes on an impermeable surface or for weak blowing was considered earlier in the framework of the theory of a laminar boundary layer in [1–4]. An asymptotic solution to the equations of a three-dimensional boundary layer in the case of strong normal blowing or suction is given in [5, 6].Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 37–48, September–October, 1980.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号