首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The single and the competitive equilibrium isotherms of nortriptyline and amytriptyline were acquired by frontal analysis (FA) on the C18- bonded discovery column, using a 28/72 (v/v) mixture of acetonitrile and water buffered with phosphate (20 mM, pH 2.70). The adsorption energy distributions (AED) of each compound were calculated from the raw adsorption data. Both the fitting of the adsorption data using multi-linear regression analysis and the AEDs are consistent with a trimodal isotherm model. The single-component isotherm data fit well to the tri-Langmuir isotherm model. The extension to a competitive two-component tri-Langmuir isotherm model based on the best parameters of the single-component isotherms does not account well for the breakthrough curves nor for the overloaded band profiles measured for mixtures of nortriptyline and amytriptyline. However, it was possible to derive adjusted parameters of a competitive tri-Langmuir model based on the fitting of the adsorption data obtained for these mixtures. A very good agreement was then found between the calculated and the experimental overloaded band profiles of all the mixtures injected.  相似文献   

2.
Using competitive frontal analysis, the binary adsorption isotherms of the enantiomers of 1-phenyl-l-propanol were measured on a microbore column packed with a chiral stationary phase based on cellulose tribenzoate. These measurements were carried out using only the racemic mixture. The experimental data were fitted to four different isotherm models: Langmuir, BiLangmuir, Langmuir-Freundlich and Tóth. The BiLangmuir and the Langmuir-Freundlich models accounted best for the competitive adsorption data. An excellent agreement between the experimental and the calculated overloaded band profiles for various samples of racemic mixture was obtained when the equilibrium dispersive model of chromatography was used together with the BiLangmuir competitive isotherm. The isotherm parameters measured under competitive conditions were used to calculate the overloaded band profiles of large samples of the pure S- and R-enantiomers, too. A satisfactory agreement between the experimental and calculated band profiles was observed when using in the computation the corresponding single component BiLangmuir isotherm derived from the binary isotherm previously determined. Thus oniy data derived from the racemic mixture are required for computer optimization of the preparative chromatography separation of the enantiomers.  相似文献   

3.
A procedure for determination of adsorption isotherms in simulated moving-bed (SMB) chromatography is presented. The parameters of a prescribed adsorption isotherm model and rate constants are derived using a hybrid inverse method, which incorporates overloaded band profiles of the racemic mixture and breakthrough data from a single frontal experiment. The latter are included to reduce the uncertainty on the estimated saturation capacity, due to the dilution of the chromatograms with respect to the injected concentrations. The adsorption isotherm model is coupled with an axially dispersed flow model with finite mass-transfer rate to describe the experimental band profiles. The numerical constants of the isotherm model are tuned so that the calculated and measured band profiles match as much as possible. The accuracy of the isotherm model is then checked against the cyclic steady state (CSS) of the target SMB process, which is readily and cheaply obtained experimentally on a single-column set-up. This experiment is as expensive and time consuming as just a few breakthrough experiments. If necessary, the isotherm parameters are adjusted by applying the inverse method to the experimental CSS concentration profile. The method is successfully applied to determine the adsorption isotherms of Tr?gers base enantiomers on Chiralpak AD/methanol system. The results indicate that the proposed inverse method offers a reliable and quick approach to determine the competitive adsorption isotherms for a specific SMB separation.  相似文献   

4.
Numerical determination of the competitive isotherm of enantiomers   总被引:4,自引:0,他引:4  
A numerical method was developed and used to determine adsorption isotherms in chromatography. The numerical parameters of an isotherm model were derived from the recorded band profiles of the racemic mixture of the 1-phenyl-1-propanol enantiomers, by means of a nonlinear least-squares method. We used the equilibrium-dispersive model of chromatography with several isotherm models. The numerical constants of the isotherm models were tuned so that the calculated and the measured band profiles match as much as possible. We show that this numerical inverse method can be applied even without the knowledge of the individual band profile of the pure enantiomers. The isotherms determined from the--usually unresolved--overloaded band profiles matched extremely well the isotherms determined by frontal analysis. Several isotherm models were used and tested--such as Langmuir, biLangmuir, Tóth, Langmuir-Freundlich. The best-fit isotherm was selected by means of statistical evaluation of the results.  相似文献   

5.
Single-component adsorption-isotherm data were acquired by frontal analysis (FA) for six low-molecular-mass compounds (phenol, aniline, caffeine, theophylline, ethylbenzene and propranolol) on one Kromasil-C18 column, using water-methanol solutions (between 70:30 and 20:80, v/v) as the mobile phase. Propranolol data were also acquired using an acetate buffer (0.2 M) instead of water. The data were modeled for best agreement between calculated and experimental overloaded band profiles. The adsorption energy distribution was also derived and used for the selection of the best isotherm model. Widely different isotherm models were found to model best the data obtained for these compounds, convex upward (i.e. Langmuirian), convex downward (i.e. anti-Langmuirian), and S-shaped isotherms. Using the same sample size for all columns (loading factor, Lf approximately 10%), overloaded band profiles were recorded on four different columns packed with the same batch of Kromasil-C18 and five other columns packed with different batches of Kromasil-C18. These experimental band profiles were compared to the profile calculated from the isotherm measured by FA on the first column. The repeatability as well as the column-to-column and the batch-to-batch reproducibilities of the band profiles are better than 4%.  相似文献   

6.
Single-component adsorption isotherm data of l-tryptophan on a C(18)-bonded silica column were acquired by frontal analysis (FA), with aqueous mobile phases containing 5% of acetonitrile at five different temperatures between 23 and 62 degrees C. The non-linear fitting of these data provided the bi-Moreau model for all temperatures as the best isotherm model. The inverse method (IM) was used to derive the parameters at these temperatures from the parameters of the 25 degrees C isotherm. The adsorption constants and the saturation capacities of the low and high-energy sites decreases by increasing the temperature, while the adsorbate-adsorbate parameters of both sites increase. An excellent agreement was found between the experimental and calculated overloaded band profiles at all the temperatures used. The breakthrough curves obtained and the overloaded band profiles obtained were found to have different shapes according to the range of concentration studied and the temperatures. At low concentration 0.05-0.5 g/L the breakthrough curves and the overloaded band profiles have a front shock and diffuse rear, which indicates langmuirian behavior, but at intermediate 1-2 g/L and high concentration 8 g/L they start to have diffuse fronts and shocks at the rear or more than one shock at the rear which indicates non-langmuirian behavior. At 23 degrees C the isotherm has another langmuirian part, which appears at high concentration. The behavior of the breakthrough curves is explained by the shape of the isotherm in which all of the isotherms have a langmuirian part (the isotherm is concave upward) and an antilangmuirian part (the isotherm is concave downward). The temperature affected the breakthrough curves by decreasing the time of the appearance of the fronts for all concentration ranges studied, and by decreasing the time difference between the highest concentration and lowest concentration of the fronts, especially the low concentration range at 0.5 g/L. The fronts of the breakthrough curves at high concentration seems to be the most affected by temperature.  相似文献   

7.
An interesting adsorption behavior of racemic methyl mandelate on a tris-(3,5-dimethylphenyl)carbamoyl cellulose chiral stationary phase was theoretically and experimentally investigated. The overloaded band of the more retained enantiomer had a peculiar shape indicating a type V adsorption isotherm whereas the overloaded band of the less retained enantiomer had a normal shape indicating a type I adsorption behavior. For a closer characterization of this separation, adsorption isotherms were determined and analyzed using an approach were Scatchard plots and adsorption energy distribution (AED) calculations are combined for a deeper analysis. It was found that the less retained enantiomer was best described by a Tóth adsorption isotherm while the second one was best described with a bi-Moreau adsorption isotherm. The latter model comprises non-ideal adsorbate-adsorbate interactions, providing an explanation to the non-ideal adsorption of the more retained enantiomer. Furthermore, the possibility of using the Moreau model as a local model for adsorption in AED calculations was evaluated using synthetically generated raw adsorption slope data. It was found that the AED accurately could predict the number of adsorption sites for the generated data. The adsorption behavior of both enantiomers was also studied at several different temperatures and found to be exothermic; i.e. the adsorbate-adsorbate interaction strength decreases with increasing temperature. Stochastic analysis of the adsorption process revealed that the average amount of adsorption/desorption events increases and the sojourn time decreases with increasing temperature.  相似文献   

8.
The influence of the column hold-up time measurement accuracy on the determination of equilibrium isotherms by classical frontal analysis and the prediction of overloaded elution band profiles were investigated. The ideal model of chromatography in combination with a Langmuir isotherm was used. Breakthrough curves and overloaded elution profiles were computer generated with a known hold-up time value (true hold-up time). Then these data were evaluated the same way as it is done with experimental chromatographic data where the true hold-up time is unknown, i.e. to determine the equilibrium isotherm by the frontal analysis procedure, to fit the isotherm data to the Langmuir model and then to predict chromatographic band profiles using, e.g. the ideal model of chromatography. A comparison of overloaded elution profiles obtained with different deviations of the hold-up time from its true value shows that the effect of its measurement error is significant in preparative liquid chromatography because the isotherm is usually strongly nonlinear in this case.  相似文献   

9.
The competitive adsorption behavior of the binary mixture of phenetole (ethoxy-benzene) and propyl benzoate in a reversed-phase system was investigated. The adsorption equilibrium data of the single-component systems were acquired by frontal analysis. The same data for binary mixtures were acquired by the perturbation method. For both compounds, the single-component isotherm data fit best to the multilayer BET model. The experimental overloaded band profiles are in excellent agreement with the profiles calculated with either the general rate model or the modified transport-dispersive models. The competitive adsorption data were modeled using the ideal adsorbed solution (IAS) theory. The numerical values of the coefficients were derived by fitting the retention times of the perturbation pulses to those calculated using the IAS theory compiled with the coherence conditions. Finally, the elution profiles of binary mixtures were recorded. They compared very well with those calculated. As a characteristic feature of this case, an unusual retainment effect of the chromatographic band of the more retained component by the less retained one was observed. The combination of the General Rate Model and the adsorption isotherm model allowed an accurate prediction of the band profiles.  相似文献   

10.
The adsorption isotherm was determined for phenol in methanol/water on a C-8 stationary phase using frontal analysis in staircase mode, assuming different total column porosities, from 1 to 87%. Each set of adsorption isotherm data, with a certain column porosity, was fitted to various adsorption models and the generated parameters were used to calculate overloaded elution band profiles that were compared with experiments. It was found that the bi-Langmuir model had an optimum fit for a porosity that corresponds well with the value found experimentally. The adsorption energy distribution (AED) calculations and error analysis confirmed a bimodal energy distribution. It was also found that band profiles can be accurately predicted with a quite arbitrary chosen porosity, under prerequisite that a wrong but flexible adsorption model is chosen instead of the correct one. The latter result is very useful for quick optimizations of preparative separations where the exact value of the column porosity is not available.  相似文献   

11.
The interactions of 3-chloro-1-phenyl-propanol with a quinidine carbamate-bonded chiral stationary phase under NPLC conditions were studied by measuring the adsorption isotherm data of its enantiomers by frontal analysis, modeling these data with a suitable isotherm model, and comparing the experimental overloaded elution band profiles with those calculated with this isotherm and the equilibrium dispersive model of liquid chromatography. The affinity energy distribution was calculated from the adsorption isotherm data. The results show that the surface of the adsorbent is heterogeneous and exhibits a bimodal adsorption energy distribution. This fact is interpreted in terms of the presence of two different types of adsorption sites on the stationary phase, nonselective and enantioselective sites. Albeit the bi-Langmuir isotherm model successfully accounts for the single-component data corresponding to both enantiomers, the competitive bi-Langmuir isotherm model does not allow an accurate prediction of the overloaded band profiles of the racemic mixture. Thermodynamic data are drawn for explanation. Some aspects of the retention mechanism are discussed in the light of the data obtained.  相似文献   

12.
Besides the accuracy and the precision of the measurements of the data points, several important parameters affect the accuracy of the adsorption isotherms that are derived from the data acquired by frontal analysis (FA). The influence of these parameters is discussed. First, the effects of the width of the concentration range within which the adsorption data are measured and of the distribution of the data points in this range are investigated. Systematic elimination of parts of the data points before the calculation of the nonlinear regression of the data to the model illustrates the importance of the numbers of data points (1) within the linear range and (2) at high concentrations. The influence of the inaccuracy of the estimate of the column hold-up volume on each adsorption data point, on the selection of the isotherm model, and on the best estimates of the adsorption isotherm parameters is also stressed. Depending on the method used to measure it, the hold-up time can vary by more than 10%. The high concentration part of the adsorption isotherm is particularly sensitive to errors made on t(0,exp) and as a result, when the isotherm follows bi-Langmuir isotherm behavior, the equilibrium constant of the low-energy sites may change by a factor 2. This study shows that the agreement between calculated and experimental overloaded band profiles is a necessary condition to validate the choice of an adsorption model and the calculation of its numerical parameters but that this condition is not sufficient.  相似文献   

13.
A microbore column packed with Chiralcel OB (cellulose tribenzoate coated silica) was used for the measurement of the single and competitive equilibrium-isotherm data of the 1-indanol enantiomers by frontal analysis. The amount of sample needed for the isotherm data acquisition was about 20 times less than that required with a conventional column. The data obtained were fitted to different single and competitive isotherm models. Both the single and the competitive data sets fitted best to the same Bilangmuir (BL) isotherm model with small differences in the numerical values of the parameters. The best fitted Bilangmuir single and competitive isotherm models were used to predict the overloaded experimental profiles of both pure enantiomers, of the racemic mixture, and of different enantiomeric mixtures. All the calculated profiles were in excellent agreement with the experimental ones. This agreement confirms that in many chiral separations, the competitive isotherms can be derived from data acquired from the mere racemic mixture with a sufficient accuracy for a correct prediction of the band profiles of all kinds of enantiomer mixtures, making possible the computer-assisted optimization of the experimental conditions.  相似文献   

14.
The single-component adsorption isotherms of the C60 (from 0 to 15 g/L) and C70 (from 0 to 8 g/L) buckminsterfullerenes on a tetraphenylporphyrin-bonded silica were acquired by frontal analysis, using a solution of toluene-1-methylnaphthalene (40:60, v/v) as the mobile phase. The best isotherm model derived from the fitting of these adsorption data was the bi-Langmuir model, a choice supported by the bimodal affinity energy distribution (AED) obtained for C60. The isotherm parameters derived from the inverse method (IM) of isotherm determination (by fitting calculated profiles to experimental overloaded band profiles of C60 and C70) are in very good agreement with those derived from the FA data. According to the isotherm parameters found by these three methods (FA, AED, IM), the tetraphenylporphyrin-bonded silica can adsorb 54 and 42 mmol/L of C60 and C70 fullerenes, respectively, a result that is consistent with the relative molecular size of these two compounds. The 20% lower surface accessibility for C70 is compensated by a three times higher equilibrium constant on the low-energy sites, giving a selectivity alpha(C70/C60) = 3.6. Large volumes (0.2, 0.8 and 1.7 mL) of mixtures of C60 (3.2 g/L) and C70 (1.3 g/L) were injected and their elution profiles compared to those calculated from the competitive bi-Langmuir model derived from the single-component isotherm data. A good agreement is obtained between calculated and experimental profiles, which supports the two-site adsorption mechanism derived from the single-component adsorption data. The measurements of the influence of the pressure on the retention of C60 and C70 demonstrate that the partial molar volumes of the two buckminsterfullerenes are 12 mL/mol larger in the stationary than in the mobile phase.  相似文献   

15.
Adsorption isotherm data of phenol from an aqueous solution of methanol onto a C18-bonded silica (Symmetry-C18) were acquired by frontal analysis (FA) at six different temperatures, in a wide concentration range. The non-linear fitting of these data provided the bi-Langmuir model as best isotherm model, a conclusion further supported by the results of the calculation of the affinity energy distribution (AED). The isotherm parameters were obtained using several methods, the fitting of FA isotherm data, the calculation of the AED, and the inverse method, that uses overloaded elution band profiles. The different values obtained are in close agreement. They allow a quantitative investigation of the separate properties of the low- and the high-energy sites on the adsorbent surface. Increasing the temperature decreases the saturation capacity of the low-energy adsorption sites and the adsorption constant of the high-energy sites. In contrast, increasing the temperature does not cause any significant changes in either the saturation capacity of the high-energy sites or the adsorption constant of the low-energy sites.  相似文献   

16.
The single-component and competitive adsorption isotherms of the enantiomers of 3-chloro-1-phenyl-1-propanol were measured by frontal analysis. The stationary phase was a cellulose tribenzoate coated on silica, the mobile phase an n-hexane-ethyl acetate (95:5) solution. The adsorption data measured fitted well to the Langmuir isotherm model. The band profiles of single components and of their mixtures were calculated using the equilibrium-dispersive model. These profiles were found to match quite satisfactorily the experimental band profiles. However, the agreement between calculated and experimental band profiles was significantly improved when a more complex model taking into account the mass transfer kinetics was used. The mass transfer rate coefficients, k(f), for both single components were determined by using the transport-dispersive model of chromatography. The coefficients obtained were used to predict the band profiles of mixtures of the two enantiomers to good agreement.  相似文献   

17.
The Reversed-phase (RP) gradient elution chromatography of nociceptin/orphanin FQ (N/OFQ), a neuropeptide with many biological effects, has been modeled under linear and non-linear conditions. In order to do this, the chromatographic behavior has been studied under both linear and nonliner conditions under isocratic mode at different mobile phase compositions--ranging from 16 to 19% (v/v) acetonitrile (ACN) in aqueous trifluoracetic acid (TFA) 0.1% (v/v)-on a C-8 column. Although the range of mobile phase compositions investigated was quite narrow, the retention factor of this relatively small polypeptide (N/OFQ is a heptadecapeptide) has been found to change by more than 400%. In these conditions, gradient operation resulted thus to be the optimum approach for non-linear elution. As the available amount of N/OFQ was extremely reduced (only a few milligrams), the adsorption isotherms of the peptide, at the different mobile phase compositions examined, have been measured through the so-called inverse method (IM) on a 5 cm long column. The adsorption data at different mobile phase compositions have been fitted to several models of adsorption. The dependence of the isotherm parameters on the mobile phase composition was modeled by using the linear solvent strength (LSS) model and a generalized Langmuir isotherm that includes the mobile phase composition dependence. The overloaded gradient separation of N/OFQ has been modeled by numerically solving the equilibrium-dispersive (ED) model of chromatography under a selected gradient elution mode, on the basis of the previously determined generalized Langmuir isotherm. The agreement between theoretical calculations and experimental overloaded band profiles appeared reasonably accurate.  相似文献   

18.
A new equation of competitive isotherms was derived in the framework of the ideal adsorbed solution (IAS) that predicts multisolute adsorption isotherms from single-solute isotherms. The IAS theory makes this new isotherm thermodynamically consistent, whatever the saturation capacities of these single-component isotherms. On a Kromasil-C(18) column, with methanol-water (80/20 v/v) as the mobile phase, the best single-solute adsorption isotherm of both toluene and ethylbenzene is the liquid-solid extended multilayer BET isotherm. Despite a significant difference between the monolayer capacities of toluene (370 g/l) and ethylbenzene (170 g/l), the experimental adsorption data fit very well to single-component isotherms exhibiting the same capacities (200 g/l). The new competitive model was used for the modeling of the elution band profiles of mixtures of the two compounds. Excellent agreement between experimental and calculated profiles was observed, suggesting that the behavior of the toluene-ethylbenzene adsorbed phase on the stationary phase is close to ideal. For example, the concentrations measured for the intermediate plateau obtained in frontal analysis differ by less than 2% from those predicted by the IAS model.  相似文献   

19.
The adsorption behavior of proline under hydrophilic interaction chromatography conditions was investigated from six aqueous solutions of acetonitrile. Proline adsorption isotherms were recorded at each mobile phase composition by frontal analysis and inverse method. The BET model was found to be the best choice to describe the nonlinear behavior of proline adsorption under hydrophilic interaction chromatography conditions. The adsorption isotherm parameters were derived from two independent parameter estimation methods. The parameters derived from regression analysis of the frontal analysis data and from overloaded elution bands were found to be in good agreement with the excess isotherm of water. The mobile phase composition at which the maximum excess adsorption of water was observed corresponded to the maximum saturation capacity measured for proline.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号