共查询到20条相似文献,搜索用时 59 毫秒
1.
在移动最小二乘法的基础上,提出了复变量移动最小二乘法.复变量移动最小二乘法的优点是采用一维基函数建立二维问题的逼近函数,所形成的无网格方法计算量小.然后,将复变量移动最小二乘法应用于弹性力学的无网格方法,提出了复变量无网格方法,推导了复变量无网格方法的公式.与传统的无网格方法相比,复变量无网格方法具有计算量小、精度高的优点.最后给出了数值算例.
关键词:
移动最小二乘法
复变量移动最小二乘法
无网格方法
弹性力学
复变量无网格方法 相似文献
2.
3.
基于移动最小二乘法在Sobolev空间Wk,p(Ω)中的误差估计以及弹性力学问题的变分弱形式中出现的双线性形式的连续性和强制性,研究了弹性力学问题的无单元Galerkin方法的误差分析以及数值解的误差和影响域半径之间的关系,给出了弹性力学问题的无单元Galerkin方法在Sobolev空间中的误差估计定理,并证明了当节点和形函数满足一定条件时该误差估计是最优阶的.从误差分析中可以看出,数值解的误差与权函数的影响域半径密切相关.最后,通过算例验证了结论的正确性.
关键词:
无网格方法
无单元Galerkin方法
弹性力学
误差估计 相似文献
4.
在高维情况下,首先研究了无单元Galerkin方法的形函数构造方法——移动最小二乘法在Sobolev空间Wk,p(Ω)中的误差估计.然后,在势问题的无单元Galerkin方法的基础上,研究了势问题的通过罚函数法施加本质边界条件的无单元Galerkin方法在Sobolev空间中的误差估计.当节点和形函数满足一定条件时,证明了该误差估计是最优阶的.从误差分析中可以看出,数值解的误差与权函数的影响半径密切相关.最后,通过算例验证了结论的正确性.
关键词:
无网格方法
无单元Galerkin方法
势问题
误差估计 相似文献
5.
6.
7.
8.
Kuramoto-Sivashinsky方程是一种可以描述复杂混沌现象的高阶非线性演化方程.方程中高阶导数项的存在,使得传统无单元Galerkin方法采用高次多项式基函数构造形函数时,形函数违背了一致性条件.因此,本文提出了一种采用平移多项式基函数的无单元Galerkin方法.与传统无单元Galerkin方法相比,该方法在方程离散时依然采用Galerkin进行离散,但形函数的构造采用了基于平移多项式基函数的移动最小二乘近似.通过对具有行波解和混沌现象的Kuramoto-Sivashinsky方程的数值模拟,验证了本文方法的有效性. 相似文献
9.
10.
基于改进的移动最小二乘插值法,提出了黏弹性问题的插值型无单元Galerkin方法.采用改进的移动最小二乘插值法建立形函数,根据黏弹性问题的Galerkin弱形式建立离散方程,推导了相应的计算公式.与无单元Galerkin方法相比,本文提出的黏弹性问题的插值型无单元Galerkin方法具有直接施加本质边界条件的优点.通过数值算例讨论了影响域、节点数对计算精确性的影响,说明了该方法具有较好的收敛性;将计算结果与无单元Galerkin方法和有限元方法或解析解比较,说明了该方法具有提高计算效率的优点. 相似文献
11.
Based on the complex variable moving least-square (CVMLS) approximation, the complex variable element-free Galerkin (CVEFG) method for two-dimensional viscoelasticity problems under the creep condition is presented in this paper. The Galerkin weak form is employed to obtain the equation system, and the penalty method is used to apply the essential boundary conditions, then the corresponding formulae of the CVEFG method for two-dimensional viscoelasticity problems under the creep condition are obtained. Compared with the element-free Galerkin (EFG) method, with the same node distribution, the CVEFG method has higher precision, and to obtain the similar precision, the CVEFG method has greater computational efficiency. Some numerical examples are given to demonstrate the validity and the efficiency of the method. 相似文献
12.
13.
An improved complex variable element-free Galerkin method for two-dimensional elasticity problems 下载免费PDF全文
In this paper, the improved complex variable moving least-squares (ICVMLS) approximation is presented. The ICVMLS approximation has an explicit physics meaning. Compared with the complex variable moving least-squares (CVMLS) approximations presented by Cheng and Ren, the ICVMLS approximation has a great computational precision and efficiency. Based on the element-free Galerkin (EFG) method and the ICVMLS approximation, the improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional elasticity problems, and the corresponding formulae are obtained. Compared with the conventional EFG method, the ICVEFG method has a great computational accuracy and efficiency. For the purpose of demonstration, three selected numerical examples are solved using the ICVEFG method. 相似文献
14.
A new complex variable element-free Galerkin method for two-dimensional potential problems 下载免费PDF全文
In this paper, based on the element-free Galerkin (EFG) method and the improved complex variable moving least- square (ICVMLS) approximation, a new meshless method, which is the improved complex variable element-free Galerkin (ICVEFG) method for two-dimensional potential problems, is presented. In the method, the integral weak form of control equations is employed, and the Lagrange multiplier is used to apply the essential boundary conditions. Then the corresponding formulas of the ICVEFG method for two-dimensional potential problems are obtained. Compared with the complex variable moving least-square (CVMLS) approximation proposed by Cheng, the functional in the ICVMLS approximation has an explicit physical meaning. Furthermore, the ICVEFG method has greater computational precision and efficiency. Three numerical examples are given to show the validity of the proposed method. 相似文献
15.
The improved element-free Galerkin(IEFG) method of elasticity is used to solve the topology optimization problems.In this method, the improved moving least-squares approximation is used to form the shape function. In a topology optimization process, the entire structure volume is considered as the constraint. From the solid isotropic microstructures with penalization, we select relative node density as a design variable. Then we choose the minimization of compliance to be an objective function, and compute its sensitivity with the adjoint method. The IEFG method in this paper can overcome the disadvantages of the singular matrices that sometimes appear in conventional element-free Galerkin(EFG) method. The central processing unit(CPU) time of each example is given to show that the IEFG method is more efficient than the EFG method under the same precision, and the advantage that the IEFG method does not form singular matrices is also shown. 相似文献
16.
In this paper,an improved complex variable meshless method(ICVMM) for two-dimensional advection-diffusion problems is developed based on improved complex variable moving least-square(ICVMLS) approximation.The equivalent functional of two-dimensional advection-diffusion problems is formed,the variation method is used to obtain the equation system,and the penalty method is employed to impose the essential boundary conditions.The difference method for twopoint boundary value problems is used to obtain the discrete equations.Then the corresponding formulas of the ICVMM for advection-diffusion problems are presented.Two numerical examples with different node distributions are used to validate and investigate the accuracy and efficiency of the new method in this paper.It is shown that ICVMM is very effective for advection-diffusion problems,and has a good convergent character,accuracy,and computational efficiency. 相似文献
17.
An improved boundary element-free method (IBEFM) for two-dimensional potential problems 总被引:1,自引:0,他引:1 下载免费PDF全文
The interpolating moving least-squares (IMLS) method is discussed
first in this paper. And the formulae of the IMLS method obtained by
Lancaster are revised. Then on the basis of the boundary
element-free method (BEFM), combining the boundary integral equation
(BIE) method with the IMLS method, the improved boundary
element-free method (IBEFM) for two-dimensional potential problems
is presented, and the corresponding formulae of the IBEFM are
obtained. In the BEFM, boundary conditions are applied directly, but
the shape function in the MLS does not satisfy the property of
the Kronecker δ function. This is a problem of the BEFM, and
must be solved theoretically. In the IMLS method, when the shape function
satisfies the property of the Kronecker δ function, then the
boundary conditions, in the meshless method based on the IMLS
method, can be applied directly. Then the IBEFM, based on the IMLS
method, is a direct meshless boundary integral equation method in
which the basic unknown quantity is the real solution of the nodal
variables, and the boundary conditions can be applied directly and
easily, thus it gives a greater computational precision. Some
numerical examples are presented to demonstrate the method. 相似文献
18.
An improved interpolating element-free Galerkin method with nonsingular weight function for two-dimensional potential problems 下载免费PDF全文
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of Kronecker δ function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. And the number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has a higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method. 相似文献
19.
An improved interpolating element-free Galerkin method with a nonsingular weight function for two-dimensional potential problems 下载免费PDF全文
In this paper, an improved interpolating moving least-square (IIMLS) method is presented. The shape function of the IIMLS method satisfies the property of the Kronecker δ function. The weight function used in the IIMLS method is nonsingular. Then the IIMLS method can overcome the difficulties caused by the singularity of the weight function in the IMLS method. The number of unknown coefficients in the trial function of the IIMLS method is less than that of the moving least-square (MLS) approximation. Then by combining the IIMLS method with the Galerkin weak form of the potential problem, the improved interpolating element-free Galerkin (IIEFG) method for two-dimensional potential problems is presented. Compared with the conventional element-free Galerkin (EFG) method, the IIEFG method can directly use the essential boundary conditions. Then the IIEFG method has higher accuracy. For demonstration, three numerical examples are solved using the IIEFG method. 相似文献
20.
Based on the improved interpolating moving least-squares (ⅡMLS) method and the Galerkin weak form, an improved interpolating element-free Galerkin (ⅡEFG) method is presented for two-dimensional elasticity problems in this paper. Compared with the interpolating moving least-squares (IMLS) method presented by Lancaster, the ⅡMLS method uses the nonsingular weight function. The number of unknown coefficients in the trial function of the ⅡMLS method is less than that of the MLS approximation and the shape function of the ⅡMLS method satisfies the property of Kronecker δ function. Thus in the ⅡEFG method, the essential boundary conditions can be applied directly and easily, then the numerical solutions can be obtained with higher precision than those obtained by the interpolating element-free Galerkin (IEFG) method. For the purposes of demonstration, four numerical examples are solved using the ⅡEFG method. 相似文献