首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Earlier calculations on the model N2-bridged dimer (micro-N2)-{Mo[NH2]3}2 revealed that ligand rotation away from a trigonal arrangement around the metal centres was energetically favourable resulting in a reversal of the singlet and triplet energies such that the singlet state was stabilized 13 kJ mol(-1) below the D(3d) triplet structure. These calculations, however, ignored the steric bulk of the amide ligands N(R)Ar (R =iPr and tBu, Ar = 3,5-C6H3Me2) which may prevent or limit the extent of ligand rotation. In order to investigate the consequences of steric crowding, density functional calculations using QM/MM techniques have been performed on the Mo(III)Mo(III) and Mo(III)Nb(III) intermediate dimer complexes (mu-N(2))-{Mo[N(R)Ar]3}2 and [Ar(R)N]3Mo-(mu-N2)-Nb[N(R)Ar]3 formed when three-coordinate Mo[N(R)Ar]3 and Nb[N(R)Ar]3 react with dinitrogen. The calculations indicate that ligand rotation away from a trigonal arrangement is energetically favourable for all of the ligands investigated and that the distortion is largely electronic in origin. However, the steric constraints of the bulky amide groups do play a role in determining the final orientation of the ligands, in particular, whether the ligands are rotated at one or both metal centres of the dimer. Analogous to the model system, QM/MM calculations predict a singlet ground state for the (mu-N2)-{Mo[N(R)Ar]3}2 dimers, a result which is seemingly at odds with the experimental triplet ground state found for the related (mu-N2)-{Mo[N(tBu)Ph]3}2 system. However, QM/MM calculations on the (mu-N2)-{Mo[N(tBu)Ph]3}2 dimer reveal that the singlet-triplet gap is nearly 20 kJ mol(-1) smaller and therefore this complex is expected to exhibit very different magnetic behaviour to the (mu-N2)-{Mo[N(R)Ar]3}2 system.  相似文献   

2.
The addition of thiols to ((t)BuO)(3)Mo[triple bond]N in toluene leads to the formation of (RS)(3)Mo[triple bond]N compounds as yellow, air-sensitive compounds, where R = (i)Pr and (t)Bu. The single-crystal structure of ((t)BuS)(3)Mo[triple bond]N reveals a weakly associated dimeric structure where two ((t)BuS)(3)Mo[triple bond]N units (Mo-N = 1.61 A, Mo-S = 2.31 A (av)) are linked via thiolate sulfur bridges with long 3.03 A (av) Mo-S interactions. Density functional theory calculations employing Gaussian 98 B3LYP (LANL2DZ for Mo and 6-31G* for N, O, S, and H) have been carried out for model compounds (HE)(3)Mo[triple bond]N and (HE)(3)MoNO, where E = O and S. A comparison of the structure and bonding within the related series ((t)BuE)(3)Mo[triple bond]N and ((t)BuE)(3)MoNO is made for E = O and S. In the thiolate compounds, the highest energy orbitals are sulfur lone-pair combinations. In the alkoxides, the HOMO is the N 2p lone-pair which has M-N sigma and M-O pi* character for the nitride. As a result of greater O p pi to Mo pi interactions, the M-N pi orbitals of the Mo-N triple bond are destabilized with respect to their thiolate counterpart. For the nitrosyl compounds, the greater O p pi to Mo d pi interaction favors greater back-bonding to the nitrosyl pi* orbitals for the alkoxides relative to the thiolates. The results of the calculations are correlated with the observed structural features and spectroscopic properties of the related alkoxide and thiolate compounds.  相似文献   

3.
The reaction pathway for the interaction of CO with three-coordinate TaIII, WIII and ReIII complexes (modelled on the experimental [M{N(tBu)Ar}3] system) has been explored by using density functional methods. Calculations show that CO binds without a barrier to [Re(NH2)3], forming the encounter complex [OC--Re(NH2)3], which is stabilized by approximately 280 kJ mol-1 relative to the reactants. The binding of [Ta(NH2)3] to the oxygen terminus of CO is inhibited by a barrier of only 20 kJ mol-1 and is followed by spontaneous cleavage of the C--O bond to form the products [C--Re(NH2)3] and [O--Ta(NH2)3]. The salient features of the potential energy surface are more favourable to CO cleavage than the analogous N2 cleavage by [Mo(NH2)3], which is less exothermic (335 vs. 467 kJ mol-1) and is impeded by a significant barrier (66 kJ mol-1). The ReIII/TaIII/CO system therefore appears to be an excellent candidate for cleaving the exceptionally strong C--O bond under mild laboratory conditions. The related WIII/TaIII dimer, which significantly weakens but does not cleave the CO bond, may be a suitable alternative when the chemistry is to be performed on activated CO rather than on the strongly bound oxide and carbide cleavage products.  相似文献   

4.
Reaction of Mo(N[R]Ar)(3) (R = (t)Bu or C(CD(3))(2)CH(3)) with N(2)O gives rise exclusively to a 1:1 mixture of nitride NMo(N[R]Ar)(3) and nitrosyl ONMo(N[R]Ar)(3), rather than the known oxo complex OMo(N[R]Ar)(3) and dinitrogen. Solution calorimetry measurements were used to determine the heat of reaction of Mo(N[R]Ar)(3) with N(2)O and, independently, the heat of reaction of Mo(N[R]Ar)(3) with NO. Derived from the latter measurements is an estimate (155.3 +/- 3.3 kcal.mol(-1)) of the molybdenum-nitrogen bond dissociation enthalpy for the terminal nitrido complex, NMo(N[R]Ar)(3). Comparison of the new calorimetry data with those obtained previously for oxo transfer to Mo(N[R]Ar)(3) shows that the nitrous oxide N-N bond cleavage reaction is under kinetic control. Stopped-flow kinetic measurements revealed the reaction to be first order in both Mo(N[R]Ar)(3) and N(2)O, consistent with a mechanism featuring post-rate-determining dinuclear N-N bond scission, but also consistent with cleavage of the N-N bond at a single metal center in a mechanism requiring the intermediacy of nitric oxide. The new 2-adamantyl-substituted molybdenum complex Mo(N[2-Ad]Ar)(3) was synthesized and found also to split N(2)O, resulting in a 1:1 mixture of nitrosyl and nitride products; the reaction exhibited first-order kinetics and was found to be ca. 6 times slower than that for the tert-butyl-substituted derivative. Discussed in conjunction with studies of the 2-adamantyl derivative Mo(N[2-Ad]Ar)(3) is the role of ligand-imposed steric constraints on small-molecule, e.g. N(2) and N(2)O, activation reactivity. Bradley's chromium complex Cr(N(i)Pr(2))(3) was found to be competitive with Mo(N[R]Ar)(3) for NO binding, while on its own exhibiting no reaction with N(2)O. Competition experiments permitted determination of ratios of second-order rate constants for NO binding by the two molybdenum complexes and the chromium complex. Analysis of the product mixtures resulting from carrying out the N(2)O cleavage reactions with Cr(N(i)Pr(2))(3) present as an in situ NO scavenger rules out as dominant any mechanism involving the intermediacy of NO. Simplest and consistent with all the available data is a post-rate-determining bimetallic N-N scission process. Kinetic funneling of the reaction as indicated is taken to be governed by the properties of nitrous oxide as a ligand, coupled with the azophilic nature of three-coordinate molybdenum(III) complexes.  相似文献   

5.
Beta-elimination is explored as a possible means of nitrogen-atom transfer into organic molecules. Molybdenum(IV) ketimide complexes of formula (Ar[t-Bu]N)3Mo(N=C(X)Ph), where Ar = 3,5-Me2C6H3 and X = SC6F5, SeC6F5, or O2CPh, are formally derived from addition of the carbene fragment [:C(X)Ph] to the terminal nitrido molybdenum(VI) complex (Ar[t-Bu]N)3Mo identical with N in which the nitrido nitrogen atom is installed by scission of molecular nitrogen. Herein the pivotal (Ar[t-Bu]N)3Mo(N=C(X)Ph) complexes are obtained through independent synthesis, and their propensity to undergo beta-X elimination, i.e., conversion to (Ar[t-Bu]N)3MoX + PhC identical with N, is investigated. Radical C-X bond formation reactions ensue when benzonitrile is complexed to the three-coordinate molybdenum(III) complex (Ar[t-Bu]N)3Mo and then treated with 0.5 equiv of X2, leading to facile assembly of the key (Ar[t-Bu]N)3Mo(N=C(X)Ph) molecules. Treated herein are synthetic, structural, thermochemical, and kinetic aspects of (i) the radical C-X bond formation and (ii) the ensuing beta-X elimination processes. Beta-X elimination is found to be especially facile for X = O2CPh, and the reaction represents an attractive component of an overall synthetic cycle for incorporation of dinitrogen-derived nitrogen atoms into organic nitrile (R-C identical with N) molecules.  相似文献   

6.
The nature of the chemical bonding in the 1:1 complexes formed by the fourth period transition metals (Sc, ..., Cu) with 14 electrons (N(2), CN(-), C(2)H(2)) and 10 electrons (NH(3), H(2)O, F(-)) ligands has been investigated at the ROB3LYP/6-311+G(2d) level by the ELF topological approach. The bonding is ruled by the nature of the ligand. The 10 electrons and anionic ligands are very poor electron acceptors and therefore the interaction with the metal is mostly electrostatic and for all metal except Cr the multiplicity is given by the [Ar]c(n)() configuration of the metallic core (n = Z - 20). The electron acceptor ligands which have at least a lone pair form linear or bent complexes involving a dative bond with the metal and the rules proposed previously for monocarbonyls hold. In the case of ethyne, it is not possible to form a linear complex and the cyclic C(2)(v)() structure imposed by symmetry possesses two covalent M-C bonds, therefore the multiplicity is given by the local core configuration [Ar]c(n)() for all metals except Mn and Ni.  相似文献   

7.
Anion [CMo(N[R]Ar)(3)](-) (R = C(CD(3))(2)CH(3) or (t)Bu, Ar = 3,5-C(6)H(3)Me(2)) containing one-coordinate carbon as a terminal substituent and related molecules have been studied by single-crystal X-ray crystallography, solution and solid-state (13)C NMR spectroscopy, and density functional theory (DFT) calculations. Chemical reactivity patterns for [CMo(N[R]Ar)(3)](-) have been investigated, including the kinetics of proton-transfer self-exchange involving HCMo(N[R]Ar)(3), the carbidomolybdenum anion's conjugate acid. While the Mo triple bond C bond lengths in [K(benzo-15-crown-5)(2)][CMo(N[R]Ar)(3)] and the parent methylidyne, HCMo(N[R]Ar)(3), are statistically identical, the carbide chemical shift of delta 501 ppm is much larger than the delta 282 ppm shift for the methylidyne. Solid-state (13)C NMR studies show the carbide to have a much larger chemical shift anisotropy (CSA, 806 ppm) and smaller (95)Mo--(13)C coupling constant (60 Hz) than the methylidyne (CSA = 447 ppm, (1)J(MoC) = 130 Hz). DFT calculations on model compounds indicate also that there is an increasing MoC overlap population on going from the methylidyne to the terminal carbide. The pK(a) of methylidyne HCMo(N[R]Ar)(3) is approximately 30 in THF solution. Methylidyne HCMo(N[R]Ar)(3) and carbide [CMo(N[R]Ar)(3)](-) undergo extremely rapid proton-transfer self-exchange reactions in THF, with k = 7 x 10(6) M(-1) s(-1). Besides being a strong reducing agent, carbide [CMo(N[R]Ar)(3)](-) reacts as a nucleophile with elemental chalcogens to form carbon-chalcogen bonds and likewise reacts with PCl(3) to furnish a carbon-phosphorus bond.  相似文献   

8.
Density functional theory has been used to calculate H-C and M-C bond dissociation enthalpies in order to evaluate the feasibility of correlating relative M-C bond enthalpies Delta H(M-C)rel with H-C bond enthalpies Delta H(H-C) via computational methods. This approach has been tested against two experimental correlations: a study of (a) Rh(H)(R)(Tp')(CNCH2CMe3) [R = hydrocarbyl, Tp' = HB(3,5-dimethylpyrazolyl)3] (Wick, D. D.; Jones, W. D. Organometallics 1999, 18, 495) and (b) Ti(R)(silox)2(NHSit-Bu3) (silox = OSit-Bu3) (Bennett, J. L.; Wolczanski, P. T. J. Am. Chem. Soc. 1997, 119, 10696). We show that the observation that M-C bond enthalpies increase more rapidly with different substituents than H-C bond enthalpies is reproduced by theory. Quantitative slopes of the correlation lines are reproduced within 4% of the experimental values with a B3PW91 functional and with very similar correlation coefficients. Absolute bond enthalpies are reproduced within 6% for H-C bonds, and relative bond enthalpies for M-C bonds are reproduced within 30 kJ mol(-1) for Rh-C bonds and within 19 kJ mol(-1) for Ti-C bonds. Values are also calculated with the BP86 functional.  相似文献   

9.
Three-coordinate Mo[N((t)Bu)Ar]3 binds cyanide to form the intermediate [Ar((t)Bu)N]3Mo-CN-Mo[N((t)Bu)Ar]3 but, unlike its N2 analogue which spontaneously cleaves dinitrogen, the C-N bond remains intact. DFT calculations on the model [NH2]3Mo/CN- system show that while the overall reaction is significantly exothermic, the final cleavage step is endothermic by at least 90 kJ mol(-1), accounting for why C-N bond cleavage is not observed experimentally. The situation is improved for the [H2N]3W/CN- system where the intermediate and products are closer in energy but not enough for CN- cleavage to be facile at room temperature. Additional calculations were undertaken on the mixed-metal [H2N]3Re+/CN- /W[NH2]3 and [H2N]3Re+/CN-/Ta[NH2]3 systems in which the metals ions were chosen to maximise the stability of the products on the basis of an earlier bond energy study. Although the reaction energetics for the [H2N]3Re+/CN /W[NH2]3 system are more favourable than those for the [H2N]3W/CN- system, the final C-N cleavage step is still endothermic by 32 kJ mol(-1) when symmetry constraints are relaxed. The resistance of these systems to C-N cleavage was examined by a bond decomposition analysis of [H2N]M-L1[triple bond]L2-M[NH2]3 intermediates for L1[triple bond]L2 = N2, CO and CN which showed that backbonding from the metal into the L1[triple bond]L2 pi* orbitals is significantly less for CN than for N2 or CO due to the negative charge on CN- which results in a large energy gap between the metal d(pi), and the pi* orbitals of CN-. This, combined with the very strong M-CN- interaction which stabilises the CN intermediate, makes C-N bond cleavage in these systems unfavourable even though the C[triple bond]N triple bond is not as strong as the bond in N2 or CO.  相似文献   

10.
Reaction of azine molecules L with the trivalent metallocenes [M(C5H4R)3](M = Ce, U; R = But, SiMe3) in toluene gave the Lewis base adducts [M(C5H4R)3(L)](L = pyridine, 3-picoline, 3,5-lutidine, 3-chloropyridine, pyridazine, pyrimidine, pyrazine, 3,5-dimethylpyrazine and s-triazine), except in the cases of M = U and L = 3-chloropyridine, pyridazine, pyrazine and s-triazine where oxidation of U(III) was found to occur. In the pairs of analogous compounds of Ce(III) and U(III), i.e.[M(C5H4But)3(L)](L = pyridine, picoline) and [M(C5H4SiMe3)3(L)](L = pyridine, lutidine, pyrimidine and dimethylpyrazine), the M-N and average M-C distances are longer for M = Ce than for M = U; however, within a series of azine adducts of the same metallocene, no significant variation is noted in the M-N and average M-C distances. The equilibria between [M(C5H4R)3], L and [M(C5H4R)3(L)] were studied by 1H NMR spectroscopy. The stability constants of the uranium complexes, KUL, are greater than those of the cerium counterparts, KCeL. The values of KML are much greater for R = SiMe3 than for R = But and a linear correlation is found between the logarithms of KML and the hydrogen-bond basicity pKHB scale of the azines. Thermodynamic parameters indicate that the enthalpy-entropy compensation effect holds for these complexation reactions. Competition reactions of [Ce(C5H4R)3] and [U(C5H4R)3] with L show that the selectivity of L in favour of U(III) increases with the [small pi] donor character of the metallocene and is proportional to the pi accepting ability of the azine molecule, measured by its reduction potential.  相似文献   

11.
The transformation of acid chlorides (RC(O)Cl) to organic nitriles (RC[triple bond]N) by the terminal niobium nitride anion [N[triple bond]Nb(N[Np]Ar)3]- ([1a-N]-, where Np = neopentyl and Ar = 3,5-Me2C6H3) via isovalent N for O(Cl) metathetical exchange is presented. Nitrido anion [1a-N]- is obtained in a heterodinuclear N2 scission reaction employing the molybdenum trisamide system, Mo(N[R]Ar)3 (R = t-Bu, 2a; R = Np, 2b), as a reaction partner. Reductive scission of the heterodinuclear bridging N2 complexes, (Ar[R]N)3Mo-(mu-N2)Nb(N[Np]Ar)3 (R = t-Bu, 3b; R = Np, 3c) with sodium amalgam provides 1 equiv each of the salt Na[1a-N] and neutral N[triple bond]Mo(N[R]Ar)3 (R = t-Bu, 2a-N; R = Np, 2b-N). Separation of 2-N from Na[1a-N] is readily achieved. Treatment of salt Na[1a-N] with acid chloride substrates in tetrahydrofuran (THF) furnishes the corresponding organic nitriles concomitant with the formation of NaCl and the oxo niobium complex O[triple bond]Nb(N[Np]Ar)3 (1a-O). Utilization of 15N-labeled 15N2 gas in this chemistry affords a series of 15N-labeled organic nitriles establishing the utility of anion [1a-N]- as a reagent for the 15N-labeling of organic molecules. Synthetic and computational studies on model niobium systems provide evidence for the intermediacy of both a linear acylimido and niobacyclobutene species along the pathway to organic nitrile formation. High-yield recycling of oxo 1a-O to a niobium triflate complex appropriate for heterodinuclear N2 scission has been developed. Specifically, addition of triflic anhydride (Tf2O, where Tf = SO2CF3) to an Et2O solution of 1a-O provides the bistriflate complex, Nb(OTf)2(N[Np]Ar)3 (1a-(OTf)2), in near quantitative yield. One-electron reduction of 1a-(OTf)2 with either cobaltocene (Cp2Co) or Mg(THF)3(anthracene) provided the monotriflato complex, Nb(OTf)(N[Np]Ar)3 (1a-(OTf)), which efficiently regenerates complexes 3b and 3c when treated with the molybdenum dinitrogen anions [N2Mo(N[t-Bu]Ar)3]- ([2a-N2]-) or [N2Mo(N[Np]Ar)3]- ([2b-N2]-), respectively.  相似文献   

12.
A multistep synthetic strategy enables the isolation of the niobaziridine-hydride complex Nb(H)(eta2-tBu(H)C=NAr)(N[Np]Ar)2 (1, Np = neopentyl, Ar = 3,5-C6H3Me2), which functions as a reactive synthon for its tautomer, the three-coordinate, trisamide species Nb(N[Np]Ar)3 (2). Treatment of 1 with various small molecules has demonstrated its capacity to effect two-electron reduction chemistry. Most noteworthy is the reaction between 1 and elemental phosphorus (P4), providing in high yield the bridging diphosphide complex (mu2:eta2,eta2-P2)[Nb(N[Np]Ar)3]2. However, unsaturated organic functionality including nitriles and aldehydes can insert into the Nb-H bond of 1, leaving the niobaziridine ring intact, thus demonstrating that dual pathways of reactivity are available to the niobaziridine-hydride functional group.  相似文献   

13.
Density functional calculations have been employed to rationalize why the heteronuclear N(2)-bridged Mo(III)Nb(III) dimer, [Ar((t)Bu)N](3)Mo(mu-N(2))Nb[N((i)Pr)Ar](3)(Ar = 3,5-C(6)H(3)Me(2)), does not undergo cleavage of the dinitrogen bridge in contrast to the analogous Mo(III)Mo(III) complex which, although having a less activated N-N bond, undergoes spontaneous dinitrogen cleavage at room temperature. The calculations reveal that although the overall reaction is exothermic for both systems, the actual cleavage step is endothermic by 144 kJ mol(-1) for the Mo(III)Nb(III) complex whereas the Mo(III)Mo(III) system is exothermic by 94 kJ mol(-1). The reluctance of the Mo(III)Nb(III) system to undergo N(2) cleavage is attributed to its d(3)d(2) metal configuration which is one electron short of the d(3)d(3) configuration necessary to reductively cleave the dinitrogen bridge. This is confirmed by additional calculations on the related d(3)d(3) Mo(III)Nb(II) and Nb(II)Nb(II) systems for which the cleavage step is calculated to be substantially exothermic, accounting for why in the presence of the reductant KC(8), the [Ar((t)Bu)N](3)Mo(mu-N(2))Nb[N((i)Pr)Ar](3) complex was observed to undergo spontaneous cleavage of the dinitrogen bridge. On the basis of these results, it can be concluded that the level of activation of the N-N bond does not necessarily correlate with the ease of cleavage of the dinitrogen bridge.  相似文献   

14.
Group 4 metallacycles [eta5:sigma-Me2C(C5H4)(C2B10H10)]Ti[eta2-N(Me)CH2CH2N(Me)] (1a), [eta5:sigma-Me2C(C5H4)(C2B10H10)]Zr[eta2-N(Me)CH2CH2N(Me)](HNMe2) (1b) and [eta5:sigma-Me2C(C5H4)(C2B10H10)]M[eta2-N(Me)CH2CH2CH2N(Me)] (M = Ti (2a), Zr (2b), Hf (2c)) were synthesized by reaction of [eta5:sigma-Me2C(C5H4)(C2B10H10)]M(NMe2)(2) (M = Ti, Zr, Hf) with MeNH(CH2)(n)NHMe (n = 2, 3). These metal complexes reacted with unsaturated molecules such as 2,6-Me2C6H3NC, PhNCO and PhCN to give exclusively M-N bond insertion products. The M-C(cage) bond remained intact. Such a preference of M-N over M-C(cage) insertion is suggested to most likely be governed by steric factors, and the mobility of the migratory groups plays no obvious role in the reactions. This work also shows that the insertion of unsaturated molecules into the metallacycles is a useful and effective method for the construction of very large ring systems.  相似文献   

15.
The diphosphaazide complex (Mes*NPP)Nb(N[Np]Ar)3 (Mes* = 2,4,6-tri-tert-butylphenyl, Np = neopentyl, Ar = 3,5-Me2C6H3), 1, has previously been reported to lose the P2 unit upon gentle heating, to form (Mes*N)Nb(N[Np]Ar)3, 2. The first-order activation parameters for this process have been estimated here using an Eyring analysis to have the values Delta H(double dagger) = 19.6(2) kcal/mol and Delta S(double dagger) = -14.2(5) eu. The eliminated P2 unit can be transferred to the terminal phosphide complexes P[triple bond]M(N[(i)Pr]Ar)3, 3-M (M = Mo, W), and [P[triple bond]Nb(N[Np]Ar)3](-), 3-Nb, to give the cyclo-P3 complexes (P3)M(N[(i)Pr]Ar)3 and [(P3)Nb(N[Np]Ar)3](-). These reactions represent the formal addition of a P[triple bond]P triple bond across a M[triple bond]P triple bond and are the first efficient transfers of the P2 unit to substrates present in stoichiometric quantities. The related complex (OC)5W(Mes*NPP)Nb(N[Np]Ar)3, 1-W(CO)5, was used to transfer the (P2)W(CO)5 unit in an analogous manner to the substrates 3-M (M = Mo, W, Nb) as well as to [(OC)5WP[triple bond]Nb(N[Np]Ar)3](-). The rate constants for the fragmentation of 1 and 1-W(CO)5 were unchanged in the presence of the terminal phosphide 3-Mo, supporting the hypothesis that molecular P2 and (P2)W(CO)5, respectively, are reactive intermediates. In a reaction related to the combination of P[triple bond]P and M[triple bond]P triple bonds, the phosphaalkyne AdC[triple bond]P (Ad = 1-adamantyl) was observed to react with 3-Mo to generate the cyclo-CP2 complex (AdCP2)Mo(N[(i)Pr]Ar)3. Reactions of the electrophiles Ph3SnCl, Mes*NPCl, and AdC(O)Cl with the anionic, nucleophilic complexes [(OC)5W(P3)Nb(N[Np]Ar)3](-) and [{(OC)5W}2(P3)Nb(N[Np]Ar)3](-) yielded coordinated eta(2)-triphosphirene ligands. The Mes*NPW(CO)5 group of one such product engages in a fluxional ring-migration process, according to NMR spectroscopic data. The structures of (OC)5W(P3)W(N[(i)Pr]Ar)3, [(Et2O)Na][{(OC)5W}2(P3)Nb(N[Np]Ar)3], (AdCP2)Mo(N[(i)Pr]Ar)3, (OC)5W(Ph3SnP3)Nb(N[Np]Ar)3, Mes*NP(W(CO)5)P3Nb(N[Np]Ar)3, and {(OC)5W}2AdC(O)P3Nb(N[Np]Ar)3, as determined by X-ray crystallography, are discussed in detail.  相似文献   

16.
The synthesis and structure of a novel beta-diketiminato Co(I) arene adduct [Me2NN]Co(eta6-toluene) (2) are described, that serves as a synthon to the reactive, "naked" 12-electron [Me2NN]Co fragment via loss of toluene in its reactions with dioxygen, organoazides, and a nitrosobenzene. Exposure of 2 to dioxygen in ether leads to {[Me2NN]Co}2(mu-O)2 (3), a rare example of a cobalt-oxo complex thermally stable at room temperature. The X-ray structure of 3 reveals a short Co-Co separation of 2.716(4) A and exhibits positional disorder for the bridging oxo groups; the predominant configuration contains oxygen atoms in square-planar sites with short Co-O distances (1.784(3) and 1.793(4) A). Reaction of 2 with organoazides N3R (R = 3,5-Me2C6H3 (Ar) or 1-adamantyl (Ad)) results in the formation of imido complexes whose structure depends on the nature of the azido substituent. The synthesis and structures of both {Me2NN]Co}2(mu-NAr)2 (4) with arylimido groups in tetrahedral bridging sites or the three-coordinate, 16-electron [Me2NN]CoNAd (5) are described. The X-ray structure of terminal imide 5 reveals a short Co-N bond distance (1.624(4) A) and only somewhat bent imido linkage (Co-N-C = 161.5(3) degrees ) consistent with a significant degree of multiple bond character. Complex 2 cleaves the O=N bond of the nitrosobenzene O=NAr (Ar = 3,5-Me2C6H3) to form the binuclear oxo-imido complex {[Me2NN]Co}2(mu-O)(mu-NAr) (6) that possesses a structure intermediate between square-planar 3 and tetrahedral 4 in which the [Me2NN]Co fragments are mutually orthogonal.  相似文献   

17.
The synthesis and reactivity of the cationic niobium and tantalum monomethyl complexes [(BDI)MeM(N(t)Bu)][X] (BDI = [Ar]NC(CH(3))CHC(CH(3))N[Ar], Ar = 2,6-(i)Pr(2)C(6)H(3); M = Nb, Ta; X = MeB(C(6)F(5))(3), B(C(6)F(5))(4)] was investigated. The cationic alkyl complexes failed to irreversibly bind CO but formed phosphine-trapped acyl complexes [(BDI)(R(3)PC(O)Me)M(N(t)Bu)][B(C(6)F(5))(4)] (R = Et, Cy) in the presence of a combination of trialkylphosphines and CO. Treatment of the monoalkyl cationic Nb complex with XylNC (Xyl = 2,6-Me(2)-C(6)H(3)) resulted in irreversible formation of the iminoacyl complex [(BDI)(XylN[double bond, length as m-dash]C(Me))Nb(N(t)Bu)][B(C(6)F(5))(4)], which did not bind phosphines but would add a methide group to the iminoacyl carbon to provide the known ketimine complex (BDI)(XylNCMe(2))Nb(N(t)Bu). Further stoichiometric chemistry explored i) migratory insertion reactions to form new alkoxide, amidinate, and ketimide complexes; ii) protonolysis reactions with Ph(3)SiOH to form thermally robust cationic siloxide complexes; and iii) catalytic high-density polyethylene formation mediated by the cationic Nb methyl complex.  相似文献   

18.
Using alcoholysis, we converted terminal phosphide PMo(N[i-Pr]Ar)3 into a new, monomeric terminal phosphide PMo(OR)3, where R = 1-methylcyclohexyl or 1-adamantyl. Dimerization of the PMo unit was observed upon alcoholysis with 2,6-dimethylphenol, and the dimer [PMo(N[i-Pr]Ar)(O-2,6-C6H3Me2)2]2 was isolated and characterized by X-ray crystallography.  相似文献   

19.
In the presence of NaH, the reaction between N2 and Mo(N[t-Bu]Ar)3 (Ar = 3,5-C6H3Me2) proceeds at room temperature to afford NMo(N[t-Bu]Ar)3 (95%). Lewis acidic silyl triflates (Me3SiOTf + pyridine or (i-Pr)3SiOTf) mediate a reaction between acid chlorides and NMo(N[t-Bu]Ar)3 to yield acyl imidos [RC(O)NMo(N[t-Bu]Ar)3][OTf] (R = Me, 92%; Ph, 75%; t-Bu, 64%). The reduction of [RC(O)NMo(N[t-Bu]Ar)3][OTf] by magnesium anthracene followed by treatment with Me3SiOTf affords molybdenum ketimides, R(Me3SiO)CNMo(N[t-Bu]Ar)3 (R = Me, 82%; Ph, 77%; t-Bu, 46%). Exposing R(Me3SiO)CNMo(N[t-Bu]Ar)3 to SnCl2 or ZnCl2 produces ClMo(N[t-Bu]Ar)3 (71-93% for SnCl2) and RCN (97-99%). Magnesium metal reduces ClMo(N[t-Bu]Ar)3 to Mo(N[t-Bu]Ar)3 (74%), completing a synthetic cycle. New strategies for the functionalization of sterically hindered nitrides and nitrile extrusion from d2 ketimides are presented in the context of a new route for derivatizing N2.  相似文献   

20.
Reduction of [M(CO)2(eta-RC[triple bond]CR')Tp']X {Tp' = hydrotris(3,5-dimethylpyrazolyl)borate, M = Mo, X = [PF6]-, R = R' = Ph, C6H4OMe-4 or Me; R = Ph, R' = H; M = W, X = [BF4]-, R = R' = Ph or Me; R = Ph, R' = H} with [Co(eta-C5H5)2] gave paramagnetic [M(CO)2(eta-RC[triple bond]CR')Tp'], characterised by IR and ESR spectroscopy. X-Ray structural studies on the redox pair [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'] and [Mo(CO)2(eta-PhC[triple bond]CPh)Tp'][PF6] showed that oxidation is accompanied by a lengthening of the C[triple bond]C bond and shortening of the Mo-C(alkyne) bonds, consistent with removal of an electron from an orbital antibonding with respect to the Mo-alkyne bond, and with conversion of the alkyne from a three- to a four-electron donor. Reduction of [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'][PF6] with [Co(eta-C5H5)2] in CH2Cl2 gives [MoCl(CO)(eta-MeC[triple bond]CMe)Tp'], via nitrile substitution in [Mo(CO)(NCMe)(eta-MeC[triple bond]CMe)Tp'], whereas a similar reaction with [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']+ (M = Mo or W) gives the phosphite-containing radicals [M(CO){P(OCH2)3CEt}(eta-MeC[triple bond]CMe)Tp']. ESR spectroscopic studies and DFT calculations on [M(CO)L(eta-MeC[triple bond]CMe)Tp'] {M = Mo or W, L = CO or P(OCH2)3CEt} show the SOMO of the neutral d5 species (the LUMO of the d4 cations) to be largely d(yz) in character although much more delocalised in the W complexes. Non-coincidence effects between the g and metal hyperfine matrices in the Mo spectra indicate hybridisation of the metal d-orbitals in the SOMO, consistent with a rotation of the coordinated alkyne about the M-C2 axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号