首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
CdS quantum dots (QD) were capped with SiO2 via a microemulsion method for reducing the toxicity and imparting the biocompatibility of the CdS QD. The resulting CdS/SiO2 core/shell nanoparticles (NP) showed an improved water‐solubility and stability even in pH 4.0 acidic medium. Their fluorescence could be effectively enhanced in the presence of bovine serum albumin (BSA), due to the passivation effect of BSA on the surface of the NP. Furthermore, the concentration dependence of the fluorescence intensity obeys the Langmuir‐type binding isotherm. Thus a novel fluorescence enhancement method for the determination of BSA has been developed using the less‐toxic CdS/SiO2 core/shell NP as probes. Under optimal conditions, the linear range of calibration curve is 0.6–30 µg·mL?1, and the detection limit is 0.18 µg·mL?1. Compared with the water‐soluble CdS NP without SiO2 shell, the CdS/SiO2 core/shell NP exhibited slightly lower fluorescence response to BSA as well as other coexisting substances, such as heavy and transition metals, due to the inhibition of SiO2 shell. The proposed method was applied to the quantification of BSA in synthetic and serum samples with satisfactory results.  相似文献   

2.
A preparation method for gadolinium compound (Gd) nanoparticles coated with silica (Gd/SiO2) is proposed. Gd nanoparticles were prepared with a homogeneous precipitation method at 80 °C using 1.0 × 10−3 M Gd(NO3)3 and 0.5 M urea in the presence of 1.0 g/L stabilizer. Among stabilizers examined. Sodium n-dodecyl sulfate (SDS) was suitable as the stabilizer for preparing small Gd nanoparticles, and consequently Gd nanoparticles with a size of 46.2 ± 12.4 nm were prepared using the SDS. Silica-coating of the Gd nanoparticles was performed by a St?ber method at room temperature using 0.013 M TEOS and 2.0 × 10−3 M NaOH in water/1-propanol solution in the presence of 1.0 × 10−3 M Gd nanoparticles, which resulted in production of Gd/SiO2 particles with an average size of 64.2 ± 14.4 nm. The Gd/SiO2 particles were surface-modified with 3-aminopropyltrimethoxysilane and succinic anhydride. It was confirmed by measurement of electrophretic light scattering that amino group or carboxyl group was introduced onto the Gd/SiO2 particles. The gadolinium concentration of 1.0 × 10−3 M in the as-prepared colloid solution was increased up to a gadolinium concentration of 0.4 M by centrifugation. The core–shell structure of Gd/SiO2 particles was undamaged, and the colloid solution was still colloidally stable, even after the concentrating process. The concentrated Gd/SiO2 colloid solution showed an X-ray image with contrast as high as a commercial Gd complex contrast agent. Internal organs in a mouse could be imaged injecting the concentrated colloid solution into it.  相似文献   

3.
We report on the synthesis and spectroscopic characterization of well-defined hybrid structures that consist of a gold core overcoated with a silica shell, followed by a dense monolayer of CdSe nanocrystal quantum dots (QDs). The dielectric silica spacer of a controlled thickness provides a simple means for tuning interactions between the QD emitters and the metal core. To illustrate this tunability, we demonstrate switching between QD emission quenching and enhancement by varying the silica shell thickness. Synthetic procedures developed here employ a final step of self-assembly of QDs onto the silica shell performed via simple titration of the QD solution with prefabricated core/shell Au/SiO2 particles. This approach allows us to perform an accurate quantitative analysis of the effect of the metal on the QD emission intensity. One important result of this analysis is that nonuniformity of nonradiative rates across the QD ensemble has a significant effect on both the magnitude and the shell-thickness dependence of the emission enhancement/quenching factors.  相似文献   

4.
Photoluminiscent (PL) cellulose aerogels of variable shape containing homogeneously dispersed and surface-immobilized alloyed (ZnS)x(CuInS2)1?x/ZnS (core/shell) quantum dots (QD) have been obtained by (1) dissolution of hardwood prehydrolysis kraft pulp in the ionic liquid 1-hexyl-3-methyl-1H-imidazolium chloride, (2) addition of a homogenous dispersion of quantum dots in the same solvent, (3) molding, (4) coagulation of cellulose using ethanol as antisolvent, and (5) scCO2 drying of the resulting composite aerogels. Both compatibilization with the cellulose solvent and covalent attachment of the quantum dots onto the cellulose surface was achieved through replacement of 1-mercaptododecyl ligands typically used in synthesis of (ZnS)x(CuInS2)1?x/ZnS (core–shell) QDs by 1-mercapto-3-(trimethoxysilyl)-propyl ligands. The obtained cellulose—quantum dot hybrid aerogels have apparent densities of 37.9–57.2 mg cm?3. Their BET surface areas range from 296 to 686 m2 g?1 comparable with non-luminiscent cellulose aerogels obtained via the NMMO, TBAF/DMSO or Ca(SCN)2 route. Depending mainly on the ratio of QD core constituents and to a minor extent on the cellulose/QD ratio, the emission wavelength of the novel aerogels can be controlled within a wide range of the visible light spectrum. Whereas higher QD contents lead to bathochromic PL shifts, hypsochromism is observed when increasing the amount of cellulose at constant QD content. Reinforcement of the cellulose aerogels and hence significantly reduced shrinkage during scCO2 drying is a beneficial side effect when using α-mercapto-ω-(trialkoxysilyl) alkyl ligands for QD capping and covalent QD immobilization onto the cellulose surface.  相似文献   

5.
Water-soluble PVP-stabilized hexagonal-phase La0.78Yb0.20Er0.02F3 nanocrystals (NCs) were synthesized by hydrothermal method. The NCs were coated with a very thin silica shell, and amino groups were introduced to the surface of silica shells by copolymerization of 3-aminopropyl(triethoxy)silane. The core/shell NCs can be dispersed in ethanol and water to form stable colloidal solution. The transmission electron microscopy (TEM), selected area electron diffraction (SAED), powder X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) were used to characterize the core/shell materials. In addition, the green up-conversion fluorescence mechanism of La0.78Yb0.20Er0.02F3/SiO2 NCs was studied with a 980-nm diode laser as excitation source. The water solubility, small core/shell particles size, and well colloidal stability mean the green up-conversion fluorescence NCs have potential applications in bioassay.  相似文献   

6.
Zinc aluminate compounds have been dispersed in silica matrix prepared by sol-gel method with different compositions for (1 ? x)ZnAl2O4xSiO2. Continuous stirring of ethylene glycol solution contained zinc nitrate, aluminium nitrate and silicon dioxide to produces gel precursor. Structural and morphological studies of (1 ? x)ZnAl2O4xSiO2 thin films were examined by field emission scanning electron microscopy (FESEM) and X-ray diffractometer (XRD) analysis. The FESEM images showed the spherical structures with porosity for (1 ? x)ZnAl2O4xSiO2 thin films. XRD analysis indicated that the crystallite size for (1 ? x)ZnAl2O4xSiO2 increased from 39.79 to 44.34 nm. Fourier transform infra-red analysis showed that the existence of H2O molecules and the presence of nitrate group within the samples. Dielectric permittivity (ε r ) of (1 ? x)ZnAl2O4xSiO2 samples were measured within frequency range from 1 Hz to 1 MHz. The dielectric permittivity, ε r decreased as frequency was applied to the sample. The performance of the patch antenna can be measured using return loss analysis. The highest result shows that the patch antenna resonated at frequency 3.46 GHz and gives ?14.25 dB return loss bandwidth.  相似文献   

7.
《Analytical letters》2012,45(5):844-855
Ag@SiO2 nanoparticles with the core-shell structure have been prepared, of which the silver core was about 50 nm and the thickness of silica shell was approximately 10 nm. In slightly alkaline aqueous solution (pH = 8), through electrostatic force between cationic polymer PDDA (i.e., poly-diallyldimethylammonium chloride) and the obtained Ag@SiO2 nanoparticles, PDDA molecules were fixed on the surface of Ag@SiO2 nanoparticles. The prepared Ag@SiO2/PDDA nanoparticles have both rich positive surface charges and rich micro-holes of silica shell. Based on micro-hole adsorption, the small molecule FITC (i.e., fluorescein isothiocyanate) marking on IgG (i.e., immunoglobulin) was adsorbed into the rich microholes of silica shell; at the same time, the negatively charge macromolecule IgG marked by FITC was firmly fixed on the rich positive charges surface of Ag@SiO2/PDDA nanoparticles by electrostatic interaction. And then, Ag@SiO2/PDDA/IgG-FITC fluorescent nanoparticles with the SPR fluorescence enhancement were prepared. The shell-type SiO2/PDDA/IgG-FITC nanoparticles were obtained by dissolving the silver core in the prepared core-shell Ag@SiO2/PDDA/IgG-FITC nanoparticles by using H2O2. Compared with the shell-type nanoparticles, the fluorescence intensity of Ag@SiO2/PDDA/IgG-FITC was enhanced 1.7 times. The prepared Ag@SiO2/PDDA/IgG-FITC nanoparticles have both SPR-based fluorescence enhancement ability and the surface distributing IgG–based obvious advantages including good biocompatibility and easy marking with other biomolecules.  相似文献   

8.
Chao Wang 《Talanta》2009,77(4):1358-249
This paper presents the synthesis of aqueous CdTe QDs embedded silica nanoparticles by reverse microemulsion method and their applications as fluorescence probes in bioassay and cell imaging. With the aim of embedding more CdTe QDs in silica spheres, we use poly(dimethyldiallyl ammonium chloride) to balance the electrostatic repulsion between CdTe QDs and silica intermediates. By modifying the surface of CdTe/SiO2 composite nanoparticles with amino and methylphosphonate groups, biologically functionalized and monodisperse CdTe/SiO2 composite nanoparticles can be obtained. In this work, CdTe/SiO2 composite nanoparticles are conjugated with biotin-labeled mouse IgG via covalent binding. The biotin-labeled mouse IgG on the CdTe/SiO2 composite nanoparticles surface can recognize FITC-labeled avidin and avidin on the surface of polystyrene microspheres by protein-protein binding. Finally, the CdTe/SiO2 composite nanoparticles with secondary antibody are used to label the MG63 osteosarcoma cell with primary antibody successfully, which demonstrates that the application of CdTe/SiO2 composite nanoparticles as fluorescent probes in bioassay and fluorescence imaging is feasible.  相似文献   

9.
PEG/SiO2 shape-stabilized phase change materials with various mass fractions and molecular weights of PEG were prepared by the sol–gel method. Polyethylene glycol (PEG) and tetraethyl orthosilicate (TEOS) were chosen as the phase change substance and the silica framework precursor, respectively. The as-prepared samples were characterized by X-ray diffraction (XRD), differential scanning calorimetry (DSC), Fourier transform infrared (FTIR) spectroscopy and scanning electron microscope (SEM) techniques. It is shown that the silica framework strongly confined the crystallization of PEG. The crystallinity and thermodynamic performance of the composites were undesirable for PEG with molecular weight of 1500 even when the PEG content reached 80 wt%. The crystallinity and thermodynamic performances of the PEG/SiO2 composites first decline then improve with the increase of the PEG molecular weights, owing to the different confinement behaviors of the silica framework. Finally, we investigated the phase change mechanism of the PEG/SiO2 composites under the different confinement of the silica framework.  相似文献   

10.
Tin silicate glass without SnOx nanoparticles (SiO2·SnOx), a silica glass containing only SnOx nanoparticles (SiO2·SnOxNP) and the improved product, which combines the tin silicate glass with SnOx nanoparticles (SiO2·SnOx·SnOxNP) was prepared. For the structural analysis 119Sn Mössbauer spectroscopy and X-ray diffraction were applied. The 119Sn Mössbauer spectra showed that the SiO2·SnOx·SnOxNP sample had the largest SnII content (12.0%). It also had an outstanding methylene blue degradation with the first-order rate value with (18?±?2) × 10?3 min?1 with visible light irradiation.  相似文献   

11.
以SiO2为成核中心,钛酸四丁酯为钛源,分别以多羟基化合物乙二醇、丙三醇、葡萄糖和聚乙烯醇为联接剂,采用水解沉淀法制备了碳掺杂和包覆的多孔SiO2/TiO2-xCx/C可见光响应型光催化剂。采用X-射线衍射(XRD)、透射电子显微镜(TEM)、X-射线光电子能谱(XPS)、傅里叶变换-红外光谱(FTIR)、比表面积(BET)和紫外-可见(UV-Vis)漫反射光谱对样品进行表征。对不同结构样品的形成机理进行了分析。以次甲基蓝(MB)溶液为模拟废水,对样品的吸附性能和可见光催化性能进行了评价。结果表明,多羟基化合物对材料的结构和性能有重要影响。碳的掺杂和包覆使材料的吸收光谱包含了整个可见光区,而多孔结构使材料的吸附性能得到提高。以聚乙烯醇为原料所得样品吸附性能最好,30 min内吸附率达到70%;而以丙三醇为原料所得样品具有最好的可见光催化性能,40 min内次甲基蓝的降解率达到95%。  相似文献   

12.
This work presents the grafting of poly(ethylene glycol) (PEG) on the SiO2 nanoparticles by the use of the azo‐groups bonded SiO2 as a radical initiator and poly(ethylene glycol) methyl ether methacrylate (PEGMA) as a macromonomer, respectively. Then a kind of organic–inorganic composite particles with brush‐like PEG fixed covalently on the SiO2 nanoparticles, SiO2–PEG, is synthesized. The successful synthesis of SiO2–PEG is confirmed by FT‐IR, XPS, and TEM techniques. Results show that the conversion degree of PEGMA can reach nearly 30% while the PEG graft amount accounts for ca. 43% of the total weight of the composite particles. After the PEG is grafted on the SiO2 nanoparticles, the mobility of PEG chains is hindered by the proximity of oxide phase of SiO2. As a result, PEG phase is strongly disturbed. Consequently, the grafted PEG melts at a low temperature with small quantity of heat enthalpy. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
In this study, silica/polystyrene/polyaniline (SiO2/PS/PANI) conductive composite particles were synthesized by four sequential reactions. The nanosized SiO2 particles were synthesized from tetraethoxysilane (TEOS) by a sol–gel process with water as the solvent medium, followed by a surface modification with triethoxyvinylsilane; then the surface modified SiO2 particles were used as seeds to synthesize SiO2/PS composite particles with soapless seeded emulsion polymerization. Finally, the SiO2/PS particles were used as seeds to synthesize the SiO2/PS/PANI conductive composite particles. The sol–gel process of SiO2, the effect of surface modification, and several other factors that influenced polymerization of styrene in the soapless seeded emulsion polymerization will be discussed. Either potassium persulfate (KPS) or 2,2′‐azobis(isobutyramidine) dihydrochloride (AIBA) was used as the initiator to synthesize the uniform SiO2/PS particles successfully, and the cross‐section morphology of the SiO2/PS particles was found to be of a core–shell structure, with SiO2 as the core, and PS as the shell. The SiO2/PS particles were well dispersed in many organic solvents. In the following step to synthesize SiO2/PS/PANI conductive composite particles, sodium dodecyl sulfate (SDS) played an important role, specifically, to absorb aniline onto the surfaces of the SiO2/PS particles to carry out the polymerization of aniline over the entire surface of the particles. The conductivity of the SiO2/PS/PANI composite particles approached that of semiconductive materials. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 342–354, 2005  相似文献   

14.
Ultrasonically assisted in situ emulsion polymerization was used to prepare electrically conducting copolymer poly(aniline‐co‐p‐phenylenediamine) [poly(Ani‐co‐pPD)] and silica (SiO2) nancomposites. This approach can solve problems in the dispersion and stabilization of SiO2 nanoparticles in the copolymer matrix. It was found that the aggregation of SiO2 nanoparticles could be reduced under ultrasonic irradiation. Scanning transmission electron microscopy (STEM) confirmed that the resulting poly(Ani‐co‐pPD)/SiO2 nanocomposite particles were spherical in shape, in which SiO2 nanoparticles were well dispersed. The comonomer molecules were absorbed on the surface of SiO2 particles and then polymerized to form core–shell nanocomposite. The incorporation of SiO2 in the nanocomposite was supported by Fourier transform infrared spectroscopy (FT‐IR). UV‐visible spectra of the diluted colloid dispersion of nanocomposite particles were similar to those of the neat copolymer. Conductivity of nanocomposites was higher than the value obtained for the neat copolymer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
Based on the polyelectrolyte-protected CdTe quantum dots (QDs), which were prepared by self-assembling of QDs and poly-diallyldimethylammonium chloride (PDADMAC) in the help of electrostatic attraction, the strong fluorescence silica nanoparticles (QDs-PDADMAC@SiO2) have been prepared via a water-in-oil reverse microemulsion method. Transmission electron microscopy and Zeta potential analysis were used to characterize the as-prepared nanoparticles. All of the particles were almost spherical and there is a uniform distribution of the particle size with the average diameter about 25 nm. There is a large Zeta potential of −35.07 mV which is necessary for good monodispersity of nanoparticles solution. As compared with the QDs coated by SiO2 (QDs@SiO2), the QDs-PDADMAC@SiO2 nanoparticles have much stronger fluorescence, and their fluorescence stability could be obviously improved. Moreover, QDs-PDADMAC@SiO2 exhibits good biological compatibility which promotes their application in cellular imaging.  相似文献   

16.
Na Xu  Dong Xue  Ling Liu  Zhao-Tie Liu  Jian Lu 《合成通讯》2013,43(11):1559-1566
A simple and efficient composite catalyst of L-proline–polyethyleneglycol(PEG)–SiO2 was developed for the asymmetric aldol reaction between acetone and p-nitrobenzaldehyde. With 10 mol% L-proline, the composite catalyst showed much better yield and enantioselectivity than the pristine L-proline over 1.5 h. Clear effects of the molecular weight of PEG and the properties of silica supports on the yield and enantioselectivity were observed, and the optimized catalyst can be reused for four cycles with stable performance.  相似文献   

17.
The key to utilizing quantum dots (QDs) as lasing media is to effectively reduce non‐radiative processes, such as Auger recombination and surface trapping. A robust strategy to craft a set of CdSe/Cd1?xZnxSe1?ySy/ZnS core/graded shell–shell QDs with suppressed re‐absorption, reduced Auger recombination rate, and tunable Stokes shift is presented. In sharp contrast to conventional CdSe/ZnS QDs, which have a large energy level mismatch between CdSe and ZnS and thus show strong re‐absorption and a constrained Stokes shift, the as‐synthesized CdSe/Cd1?xZnxSe1?ySy/ZnS QDs exhibited the suppressed re‐absorption of CdSe core and tunable Stokes shift as a direct consequence of the delocalization of the electron wavefunction over the entire QD. Such Stokes shift‐engineered QDs with suppressed re‐absorption may represent an important class of building blocks for use in lasers, light emitting diodes, solar concentrators, and parity‐time symmetry materials and devices.  相似文献   

18.
A series of SiO2/PMMA composite particles with different morphologies were prepared by conventional emulsion polymerization by the aid of acid–base interaction between the silanol groups of unmodified silica particles and the amino groups of 4‐vinylpyridine. In this approach, no surface treatment for nanosilica particles was required. The morphologies of composite particles, for example, multicore–shell, raspberry‐like, and conventional core–shell, could be controlled by modulating emulsifier content, monomer/silica ratio, silica size, and monomer feed method. The possible particle formation mechanisms were discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3807–3816, 2006  相似文献   

19.
The use of click chemistry for quantum dot (QD) functionalization could be very promising for the development of bioconjugates dedicated to in vivo applications. Alkyne–azide ligation usually requires copper(I) catalysis. The luminescence response of CdSeTe/ZnS nanoparticles coated with polyethylene glycol (PEG) is studied in the presence of copper cations, and compared to that of InP/ZnS QDs coated with mercaptoundecanoic acid (MUA). The quenching mechanisms appear different. Luminescence quenching occurs without any wavelength shift in the absorption and emission spectra for the CdSeTe/ZnS/PEG nanocrystals. In this case, the presence of copper in the ZnS shell is evidenced by energy‐filtered transmission electron microscopy (EF‐TEM). By contrast, in the case of InP/ZnS/MUA nanocrystals, a redshift of the excitation and emission spectra, accompanied by an increase in absorbance and a decrease in photoluminescence, is observed. For CdSeTe/ZnS/PEG nanocrystals, PL quenching is enhanced for QDs with 1) smaller inorganic‐core diameter, 2) thinner PEG shell, and 3) hydroxyl terminal groups. Whereas copper‐induced PL quenching can be interesting for the design of sensitive cation sensors, copper‐free click reactions should be used for the efficient functionalization of nanocrystals dedicated to bioapplications, in order to achieve highly luminescent QD bioconjugates.  相似文献   

20.
Poly(styrene) (PST) coatings of monodispersed colloidal metal oxide particles by surface grafting to poly(N-vinyl-2-pyrrolidone) (ST–PVP) or quaternized poly(4-vinylpyridine) (ST-PVPy(Me)) macromer, having a vinylphenylene end group, were investigated. Radical polymerization of styrene (ST) in ethanolic silica colloid in the presence of ST-PVP successfully led to the formation of monodispersed PST/PVP copolymer/SiO2composites. The addition of divinylbenzene (DVB) to the reaction system gave SiO2 composites coated with crosslinked PST. Graft-polymerization of ST to ST-PVP also took place on TiO2, CeO2 and Al(OH)3 colloidal particles in ethanolic solution. However, ST-PVPy(Me) adsorbed on colloidal silica did not effectively graft PST.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号