首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Configuration interaction calculations of the ground and excited states of the H2CO molecule adsorbed on the Ag(111) surface have been carried out to study the photoinduced dissociation process leading to polymerization of formaldehyde. The metal-adsorbate system has been described by the embedded cluster and multireference configuration interaction methods. The pi electron-attachment H2CO- and n-pi* internally excited H2CO* states have been considered as possible intermediates. The calculations have shown that H2CO* is only very weakly bound on Ag(111), and thus that the dissociation of adsorbed formaldehyde due to internal excitation is unlikely. By contrast, the H2CO- anion is strongly bound to Ag(111) and gains additional vibrational energy along the C-O stretch coordinate via Franck-Condon excitation from the neutral molecule. Computed energy variations of adsorbed H2CO and H2CO- at different key geometries along the pathway for C-O bond cleavage make evident, however, that complete dissociation is very difficult to attain on the potential energy surface of either of these states. Instead, reneutralization of the vibrationally excited anion by electron transfer back to the substrate is the most promising means of breaking the C-O bond, with subsequent formation of the coadsorbed O and CH2 fragments. Furthermore, it has been demonstrated that the most stable state for both dissociation fragments on Ag(111) is a closed-shell singlet, with binding energies relative to the gas-phase products of approximately 3.2 and approximately 1.3 eV for O and CH2, respectively. Further details of the reaction mechanism for the photoinduced C-O bond cleavage of H2CO on the Ag(111) surface are also given.  相似文献   

2.
The authors use transient absorption spectroscopy to monitor the ionization and dissociation products following two-photon excitation of pure liquid water. The primary decay mechanism changes from dissociation at an excitation energy of 8.3 eV to ionization at 12.4 eV. The two channels occur with similar yield for an excitation energy of 9.3 eV. For the lowest excitation energy, the transient absorption at 267 nm probes the geminate recombination kinetics of the H and OH fragments, providing a window on the dissociation dynamics. Modeling the OH geminate recombination indicates that the dissociating H atoms have enough kinetic energy to escape the solvent cage and one or two additional solvent shells. The average initial separation of H and OH fragments is 0.7+/-0.2 nm. Our observation suggests that the hydrogen bonding environment does not prevent direct dissociation of an O-H bond in the excited state. We discuss the implications of our measurement for the excited state dynamics of liquid water and explore the role of those dynamics in the ionization mechanism at low excitation energies.  相似文献   

3.
Anion photoelectron spectra of Ga(2)N(-) were measured at photodetachment wavelengths of 416 nm(2.978 eV), 355 nm(3.493 eV), and 266 nm(4.661 eV). Both field-free time-of-flight and velocity-map imaging methods were used to collect the data. The field-free time-of-flight data provided better resolution of the features, while the velocity-map-imaging data provided more accurate anisotropy parameters for the peaks. Transitions from the ground electronic state of the anion to two electronic states of the neutral were observed and analyzed with the aid of electronic structure calculations and Franck-Condon simulations. The ground-state band was assigned to a transition between linear ground states of Ga(2)N(-)(X (1)Sigma(g) (+)) and Ga(2)N(X (2)Sigma(u) (+)), yielding the electron affinity of Ga(2)N, 2.506+/-0.008 eV. Vibrationally resolved features in the ground-state band were assigned to symmetric and antisymmetric stretch modes of Ga(2)N, with the latter allowed by vibronic coupling to an excited electronic state. The energy of the observed excited neutral state agrees with that calculated for the A (2)Pi(u) state, but the congested nature of this band in the photoelectron spectrum is more consistent with a transition to a bent neutral state.  相似文献   

4.
Reactions of HOD(+) with CO(2) have been studied for HOD(+) in its ground state, and with one quantum of excitation in each of its vibrational modes: (001)--predominantly OH stretch, 0.396 eV; (010)--bend, 0.153 eV; and (100)--predominantly OD stretch, 0.293 eV. Integral cross sections and product recoil velocities were recorded for collision energies from threshold to 3 eV. The cross sections for both H(+) and D(+) transfer rise with increasing collision energy from threshold to ~1 eV, then become weakly dependent of the collision energy. All three vibrational modes enhance the total reactivity, but quite mode specifically. The H(+) transfer reaction is enhanced by OH stretch excitation, whereas OD stretch excitation has little effect. Conversely, the D(+) transfer reaction is enhanced by OD stretch excitation, while the OH stretch has little effect. Excitation of the bend strongly enhances both channels. The effects of the stretch excitations are consistent with previous studies of neutral HOD mode-selective chemistry, and can be at least qualitatively understood in terms of a late barrier to product formation. The fact that bend excitation produces the largest overall enhancement is surprising, because this is the lowest energy excitation, and is not obviously connected with the reaction coordinates for either H(+) or D(+) transfer. A rationalization in terms of the effects of water distortion on the potential surface is proposed.  相似文献   

5.
The photochemistry of mass selected CO(2) (-)(H2O)(m), m=2-40 cluster anions is investigated using 266 nm photofragment spectroscopy and theoretical calculations. Similar to the previous 355 nm experiment [Habteyes et al., Chem. Phys. Lett. 424, 268 (2006)], the fragmentation at 266 nm yields two types of anionic products: O(-)(H2O)(m-k) (core-dissociation products) and CO(2) (-)(H2O)(m-k) (solvent-evaporation products). Despite the same product types, different electronic transitions and dissociation mechanisms are implicated at 355 and 266 nm. The 355 nm dissociation is initiated by excitation to the first excited electronic state of the CO(2) (-) cluster core, the 1 (2)B(1)(2A") state, and proceeds via a glancing Renner-Teller intersection with the ground electronic state at a linear geometry. The 266 nm dissociation involves the second excited electronic state of CO(2) (-), the 2 (2)A(1)(2A') state, which exhibits a conical intersection with the 3 (2)B(2)(A') state at a bent geometry. The asymptotic O(-) based products are believed to be formed via this 3 (2)B(2)(A') state. By analyzing the fragmentation results, the bond dissociation energy of CO(2) (-) to O(-)+CO in hydrated clusters (m> or =20) is estimated as 2.49 eV, compared to 3.46 eV for bare CO(2) (-). The enthalpy of evaporation of one water molecule from asymptotically large CO(2) (-)(H(2)O)(m) clusters is determined to be 0.466+/-0.001 eV (45.0+/-0.1 kJ/mol). This result compares very favorably with the heat of evaporation of bulk water, 0.456 eV (43.98 kJ/mol).  相似文献   

6.
Geometries, harmonic vibrational frequencies, and relative electronic energies of the two low-lying electronic states of the GeCl(2) dimer have been calculated at the CIS(D) method with a cc-pVTZ basis set. Minima corresponding to three isomers on the ground-state potential energy surface have been characterized. The most stable dimer has a dissociation energy of 0.74 eV and has a trans-(GeCl(2))(2) structure. There is also a related, less stable, cis minimum. A third, C(i) symmetry, isomer has a binding energy of 0.31 eV. It is found that this C(i) isomer has substantial dipole transition strength to the first excited singlet state of the dimer with a vertical excitation energy of 3.33 eV. The transition energy (T(0)) between this C(i) isomer and the van der Waals complex on the singlet excited state is predicted to be 4.007 eV, or a 1104 cm(-1) blueshift with respect to that of the GeCl(2) A-X transition. This finding may explain the diffuse structure which has been observed in the ultraviolet laser-induced fluorescence spectra of GeCl(2).  相似文献   

7.
The photoinduced charge transfer that had been suggested to result in the dissociation of phenol on Ag(111) was investigated by two-photon photoemission spectroscopy. An unoccupied intermediate state was positively identified, which was found to be located 3.22 eV above the Fermi level. From the photoelectron energy dispersion, the effective mass of the intermediate state was determined to be (15 +/- 10)m(e) for a 1 ML coverage of phenol. This implies that the excited electron is localized mainly on the adsorbed phenol, forming a molecular resonance state. Polarization dependence of the photoelectron intensity suggested that the initial photoexcitation of the substrate produces hot electrons that scatter into the molecular resonance state, leading ultimately to the dissociation of the adsorbate. These results are the first two-photon photoemission study to characterize the transient anionic state involved in photodissociation of a molecule adsorbed on a metal surface.  相似文献   

8.
Velocity map ion imaging of the H atoms formed in the photodissociation of vibrationally excited ammonia molecules measures the extent of adiabatic and nonadiabatic dissociation for different vibrations in the electronically excited state. Decomposition of molecules with an excited symmetric N-H stretch produces primarily ground state NH(2) along with a H atom. The kinetic energy release distribution is qualitatively similar to the ones from dissociation of ammonia excited to the electronic origin or to several different levels of the bending vibration and umbrella vibration. The situation is very different for electronically excited molecules containing a quantum of antisymmetric N-H stretch. Decomposition from that state produces almost solely electronically excited NH(2)*, avoiding the conical intersection between the excited state and ground state surfaces. These rotationally resolved measurements agree with our previous inferences from lower resolution Doppler profile measurements. The production of NH(2)* suggests that the antisymmetric stretching excitation in the electronically excited molecule carries it away from the conical intersection that other vibrational states access.  相似文献   

9.
10.
The lowest singlet excited electronic state of water monomer in the gas phase is strictly dissociative along a OH stretch coordinate but changes its nature when the stretched OH moiety is hydrogen bonded to a neighboring water molecule. This work extends previous exploration of the water dimer excited singlet potential-energy surface, using computational methods that are reliable even at geometries well removed from the ground-state equilibrium. First, the hydrogen-bonded OH moiety is stretched far enough to establish the existence of a barrier that is sufficient to support a quasibound vibrational state of the OH oscillator near the Franck-Condon region. Second, the constraint of an icelike structure is relaxed, and it is found that a substantial fraction of liquidlike structures also supports a quasibound vibrational state. These potential-energy explorations on stretching of the hydrogen-bonded OH moiety in a water dimer are discussed as a model for understanding the initial dynamics upon excitation into the lowest excited singlet state of condensed water. The possibility is raised that the excited-state lifetime may be long enough to allow for exciton migration, which would provide a mechanism for energy transport in condensed water phases.  相似文献   

11.
A model potential method in which a molecule is described as a single electron moving in the field of two polarizable cores is used to calculate the potential energy curves and the wavefunctions of the lowest six electronic states of the molecular ion Na2+. The ground X2Σg state has a dissociation energy of 0.98 eV at an equilibrium separation of 3.3 Å and the excited 2Πu state has a dissociation energy of 0.23 eV at an equilibrium separation of 5.2 Å. Various molecular properties of these two bound states are calculated. An analysis of the long range behaviour of all the six states is presented.  相似文献   

12.
Unrestricted Hartree-Fock, coupled-cluster calculations are reported for the ground state of NeH+ using atomic basis sets of increasing size and accuracy for both Ne and H. The goal is to determine the basis set and coupled-cluster level of calculation needed to obtain a NeH+ potential energy curve of known accuracy. Here, it is shown that calculations using a quintuple zeta basis at the coupled-cluster singles and doubles level with noniterative triples, CCSD(T) , predict a Ne—H bond dissociation energy that is within about 0.01 eV of the exact Born–Oppenheimer molecular electronic structure result. Spectroscopic constants determined using the Simons–Parr–Finlan procedure are found to be in very good agreement with the experimental results. Calculations at the augmented quadruple zeta level for the two lowest triplet excited states of the NeH+ species are presented. Both of these states separate into ground-state Ne+ and H(1s). The resulting potential curves predict stable minima at the SCF, CCSD, and CCSD(T) levels with dissociation energies of about 0.07 eV. Spectroscopic constants from the potential curves and dissociation constants are reported. © 1994 John Wiley & Sons, Inc.  相似文献   

13.
All electron ab initio calculations for the interaction of H2O with Cl2 and Br2 are reported for the ground state and the lowest triplet and singlet Pi excited states as a function of both the X-X and O-X bond lengths (X = Cl or Br). For the ground state and lowest triplet state, the calculations are performed with the coupled cluster singles, doubles, and perturbative triple excitation level of correlation using an augmented triple-zeta basis set. For the 1Pi state the multireference average quadratic coupled cluster technique was employed. For several points on the potential, the calculations were repeated with the augmented quadruple-zeta basis set. The ground-state well depths were found to be 917 and 1,183 cm-1 for Cl2 and Br2, respectively, with the triple-zeta basis set, and they increased to 982 and 1,273 cm-1 for the quadruple-zeta basis set. At the geometry of the ground-state minimum, the lowest energy state corresponding to the unperturbed 1Pi states of the halogens increases in energy by 637 and 733 cm-1, respectively, relative to the ground-state dissociation limit of the H2O-X2 complex. Adding the attractive ground-state interaction energy to that of the repulsive excited state predicts a blue-shift, relative to that of the free halogen molecules, of approximately 1,600 cm-1 for H2O-Cl2 and approximately 2,000 cm-1 for H2O-Br2. These vertical blue-shifts for the dimers are greater than the shift of the band maximum upon solvation of either halogen in liquid water.  相似文献   

14.
Density functional theory was used to investigate the reaction pathways for HSCH(3) adsorption on Au(111) at low coverage. A molecular adsorbed state was found with the S atom bond on Top sites (E approximately -0.38 eV) and molecular adsorption is nonactivated. The H-SCH(3) dissociation process is energetically less favorable and becomes slightly exothermic only when surface relaxation is considered (DeltaE approximately -0.2 eV). All the reaction pathways present a sizable activation energy barrier, with the lowest being approximately 0.52 eV (0.41 eV taking into account slab relaxation). In the corresponding saddle point of the potential energy surface, the S atom of the methylthiolate molecule is placed on Top sites and the H near a Bridge site. The high barrier obtained explains the complete absence of reactive methanethiol dissociation found in recent experiments.  相似文献   

15.
Proton and hydrogen atom time-of-flight spectra in collision energy range of E(trans) = 9.5-30 eV show that the endoergic charge transfer process in the H+ + CO system is almost an order of magnitude less probable than the elastic scattering [G. Niedner-Schatteburg and J. P. Toennies, Adv. Chem. Phys. LXXXII, 553 (1992)]. Ab initio computations at the multireference configuration interaction level have been performed to obtain the ground- and several low-lying excited electronic state potential energy curves in three different molecular orientations namely, H+ approaching the O-end and the C-end (collinear), and H+ approaching the CO molecule in perpendicular configuration with fixed CO internuclear distance. Nonadiabatic coupling terms between the ground electronic state (H+ + CO) and the three low-lying excited electronic states (H + CO+) have been computed and the corresponding diabatic potentials have been obtained. A time-dependent wavepacket dynamics study is modeled first involving only the ground and the first excited states and then involving the ground and the three lowest excited states at the collision energy of 9.5 eV. The overall charge transfer probability have been found to be approximately 20%-30% which is in qualitative agreement with the experimental findings.  相似文献   

16.
We used time-resolved two-photon photoemission (2PPE) spectroscopy to investigate the photochemical behavior, the interfacial electronic structure, and the fate of photogenerated hot electron for carbon tetrachloride adsorbed on Ag(111). The photodissociation cross section was determined over a wide range of photon energy from 1.62 to 5.69 eV, which suggested a low-lying electron affinity level of adsorbed CCl4. A CCl4-derived unoccupied state located at 3.41 eV above the Fermi level was attributed to an image potential (IP) state based on its binding energy and effective mass. Polarization dependence of the 2PPE signal revealed that the IP state was populated by an indirect excitation process involving scattering of photoexcited hot electrons rather than direct electronic transition from a bulk band. The lifetime of the IP state was much shorter on the CCl4-covered Ag(111) surface than on the clean one, implying that the electron in the IP state is scavenged effectively by CCl4, probably through dissociative attachment to it. These results are significant in the sense that they provide dynamical evidence for a new relaxation pathway of the IP state in addition to the more common pathway involving back transfer of electron to the substrate.  相似文献   

17.
Reactions of HOD(+) with N(2) have been studied for HOD(+) in its ground state and with one quantum of excitation in each of its vibrational modes: (001)--predominately OH stretch, 0.396 eV, (010)--bend, 0.153 eV, and (100)--predominately OD stretch, 0.293 eV. Integral cross sections and product recoil velocities were recorded for collision energies from threshold to 4 eV. The cross sections for both H(+) and D(+) transfer rise slowly from threshold with increasing collision energy; however, all three vibrational modes enhance reaction much more strongly than equivalent amounts of collision energy and the enhancements remain large even at high collision energy, where the vibration contributes less than 10% of the total energy. Excitation of the OH stretch enhances H(+) transfer by a factor of ~5, but the effect on D(+) transfer is only slightly larger than that from an equivalent increase in collision energy, and smaller than the effect from the much lower energy bend excitation. Similarly, OD stretch excitation strongly enhances D(+) transfer, but has essentially no effect beyond that of the additional energy on H(+) transfer. The effects of the two stretch vibrations are consistent with the expectation that stretching the bond that is broken in the reaction puts momentum in the correct coordinate to drive the system into the exit channel. From this perspective it is quite surprising that bend excitation also results in large (factor of 2) enhancements of both H(+) and D(+) transfer channels, such that its effect on the total cross section at collision energies below ~2 eV is comparable to those from the two stretch modes, even though the bend excitation energy is much smaller. For collision energies above ~2 eV, the vibrational effects become approximately proportional to the vibrational energy, though still much larger than the effects of equivalent addition of collision energy. Measurements of the product recoil velocity distributions show that reaction is direct at all collision energies, with roughly half the products in a sharp peak corresponding to stripping dynamics and half with a broad and approximately isotropic recoil velocity distribution. Despite the large effects of vibrational excitation on reactivity, the effects on recoil dynamics are small, indicating that vibrational excitation does not cause qualitative changes in the reaction mechanism or in the distribution of reactive impact parameters.  相似文献   

18.
Pulsed 266 and 355 nm ultraviolet laser irradiation of monolayer vinyl chloride physisorbed on Ag(111) results in molecular dissociation leading to C2H3 and Cl, much of which is adsorbed to the surface. On the basis of observations made on dissociation dependences on chlorine isotope and photon energy, it is deduced that upon excitation vinyl chloride forms a transient negative ion through a substrate mediated, vertical electron attachment mechanism. The anion either dissociates or relaxes through energy transfer to the neutral state causing the neutral molecule to desorb. The threshold for vertical attachment of substrate electron is estimated to be 0.8 eV below the vacuum level, in agreement with the experimentally observed wavelength dependence in photoinduced dissociation. Chemisorbed Cl on the Ag(111) surface inhibits the photodissociation process by increasing the substrate work function and consequently the energy threshold for electron vertical attachment. Upon heating the Ag(111) surface, adsorbed vinyl combines to produce 1,3-butadiene in a first order, diffusion limited, process with an activation energy of 10.4 kcal/mol.  相似文献   

19.
Classical trajectory simulations are used to study the intramolecular dynamics of isolated CF3H and the CF3H(H2O)3 cluster, by either exciting the CH stretch local mode to then=6 level or by adding an equivalent amount of energy to an OH stretch normal mode. Energy transfer from the CH local mode is statistically the same for CF3H(H2O)3 as for isolated CF3H, and agrees with previous experimental studies. Clusters excited with 6 quanta in the CH local mode are remarkably stable. Though the CF3H-(H2O)3 intermolecular potential is only 1.5 kcal/mol, only 1 of 26 clusters excited with 6 quanta in the CH local mode dissociate within 10 ps. The absorption linewidth for the CH local mode in CF3H(H2O)3 is related to IVR within CF3H and not to the unimolecular lifetime of the cluster. When an OH stretch normal mode of the cluster is excited, energy transfer to CF3H is negligible and nearly one half of the clusters dissociate within 10 ps.  相似文献   

20.
The dissociation of the hydroxymethyl radical, CH(2)OH, and its isotopolog, CD(2)OH, following excitation in the 4ν(1) region (OH stretch overtone, near 13,600 cm(-1)) was studied using sliced velocity map imaging. A new vibrational band near 13,660 cm(-1) arising from interaction with the antisymmetric CH stretch was discovered for CH(2)OH. In CD(2)OH dissociation, D atom products (correlated with CHDO) were detected, providing the first experimental evidence of isomerization in the CH(2)OH ? CH(3)O (CD(2)OH ? CHD(2)O) system. Analysis of the H (D) fragment kinetic energy distributions shows that the rovibrational state distributions in the formaldehyde cofragments are different for the OH bond fission and isomerization pathways. Isomerization is responsible for 10%-30% of dissociation events in all studied cases, and its contribution depends on the excited vibrational level of the radical. Accurate dissociation energies were determined: D(0)(CH(2)OH → CH(2)O + H) = 10,160 ± 70 cm(-1), D(0)(CD(2)OH → CD(2)O + H) = 10,135 ± 70 cm(-1), D(0)(CD(2)OH → CHDO + D) = 10,760 ± 60 cm(-1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号