首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A well-known optimization procedure is used to find the optimal disturbances in two different suction boundary layers within the spatial framework. The maximum algebraic growth in the asymptotic suction boundary layer is presented and compared to previous temporal results. Furthermore, the spatial approach allows a study of a developing boundary layer in which a region at the leading edge is left free from suction. This new flow, which emulates the base flow of a recent wind-tunnel experiment, is herein denoted a semi-suction boundary layer. It is found that the optimal disturbances for these two suction boundary layers consist of streamwise vortices that develop into streamwise streaks, as previously found for a number of shear flows. It is shown that the maximum energy growth in the semi-suction boundary layer is obtained over the upstream region where no suction is applied. The result indicates that the spanwise scale of the streaks is set in this region, which is in agreement with previous experimental findings.  相似文献   

2.
The development of disturbances in a hypersonic boundary layer on a cooled surface is investigated in the case in which the characteristic velocity of disturbance propagation is small but greater than the flow velocity in the wall region of the three-layer disturbed zone with interaction. The nonlinear boundary value problem formulated involves a single similarity parameter that characterizes the contribution made by the main, on average either subsonic or supersonic, region of the boundary layer to the generation of the pressure disturbance. In the linear approximation, an analytical solution and an algebraic dispersion equation are derived. It is shown that only waves exponential in time and in the streamwise coordinate can propagate downstream when themain region of the undisturbed boundary layer is subsonic on average.  相似文献   

3.
We report the findings from a theoretical analysis of optimally growing disturbances in an initially turbulent boundary layer. The motivation behind this study originates from the desire to generate organized structures in an initially turbulent boundary layer via excitation by disturbances that are tailored to be preferentially amplified. Such optimally growing disturbances are of interest for implementation in an active flow control strategy that is investigated for effective jet noise control. Details of the optimal perturbation theory implemented in this study are discussed. The relevant stability equations are derived using both the standard decomposition and the triple decomposition. The chosen test case geometry contains a convergent nozzle, which generates a Mach 0.9 round jet, preceded by a circular pipe. Optimally growing disturbances are introduced at various stations within the circular pipe section to facilitate disturbance energy amplification upstream of the favorable pressure gradient zone within the convergent nozzle, which has a stabilizing effect on disturbance growth. Effects of temporal frequency, disturbance input and output plane locations as well as separation distance between output and input planes are investigated. The results indicate that optimally growing disturbances appear in the form of longitudinal counter-rotating vortex pairs, whose size can be on the order of several times the input plane mean boundary layer thickness. The azimuthal wavenumber, which represents the number of counter-rotating vortex pairs, is found to generally decrease with increasing separation distance. Compared to the standard decomposition, the triple decomposition analysis generally predicts relatively lower azimuthal wavenumbers and significantly reduced energy amplification ratios for the optimal disturbances.  相似文献   

4.
Adjoint-based iterative methods are employed to compute linear optimal disturbances in a spatially growing boundary layer around an elliptic leading edge. The Lagrangian approach is used where an objective function is chosen and constraints are assigned. The optimisation problem is solved using power iterations combined with a matrix-free formulation, where the state is marched forward in time with a standard direct numerical simulation solver and backward with the adjoint solver until a chosen convergence criterion is fulfilled. We consider the global and, more relevant to receptivity studies, the upstream localised optimal initial condition leading to the largest possible energy amplification at time T. We find that the two-dimensional initial condition with the largest potential for growth is a Tollmien–Schlichting-like wave packet that includes the Orr mechanism and is located inside the boundary layer downstream of the leading edge. Three-dimensional optimal disturbances induce streaks by the lift-up mechanism. Requiring the optimal initial condition to be localised upstream of the plate enables us to better study the effects of the leading edge on the boundary layer receptivity mechanisms. Two-dimensional upstream disturbances are inefficient at triggering unstable eigenmodes, whereas three-dimensional disturbances induce streamwise streaks with significant growth.  相似文献   

5.
We consider the problem of constructing optimal preset laws of variation of the angular momentum vector of a rigid body taking the body from an arbitrary initial angular position to the required terminal angular position in a given time. We minimize an integral quadratic performance functional whose integrand is a weighted sum of squared projections of the angular momentum vector of the rigid body. We use the Pontryagin maximum principle to derive necessary optimality conditions. In the case of a spherically symmetric rigid body, the problem has a well-known analytic solution. In the case where the body has a dynamic symmetry axis, the obtained boundary value optimization problem is reduced to a system of two nonlinear algebraic equations. For a rigid body with an arbitrarymass distribution, optimal control laws are obtained in the form of elliptic functions. We discuss the laws of controlled motion and applications of the constructed preset laws in systems of attitude control by external control torques or rotating flywheels.  相似文献   

6.
The development of localized disturbances in parallel shear flows is reviewed. The inviscid case is considered, first for a general velocity profile and then in the special case of plane Couette flow so as to bring out the key asymptotic results in an explicit form. In this context, the distinctive differences between the wave-packet associated with the asymptotic behavior of eigenmodes and the non-dispersive (inviscid) continuous spectrum is highlighted. The largest growth is found for three-dimensional disturbances and occurs in the normal vorticity component. It is due to an algebraic instability associated with the lift-up effect. Comparison is also made between the analytical results and some numerical calculations.Next the viscous case is treated, where the complete solution to the initial value problem is presented for bounded flows using eigenfunction expansions. The asymptotic, wave-packet type behaviour is analyzed using the method of steepest descent and kinematic wave theory. For short times, on the other hand, transient growth can be large, particularly for three-dimensional disturbances. This growth is associated with cancelation of non-orthogonal modes and is the viscous equivalent of the algebraic instability. The maximum transient growth possible to obtain from this mechanism is also presented, the so called optimal growth.Lastly the application of the dynamics of three dimensional disturbances in modeling of coherent structures in turbulent flows is discussed.  相似文献   

7.
An input/output framework is used to analyze the sensitivity of two- and three-dimensional disturbances in a compressible boundary layer for changes in wall and momentum forcing. The sensitivity is defined as the gradient of the kinetic disturbance energy at a given downstream position with respect to the forcing. The gradients are derived using the parabolized stability equations (PSE) and their adjoint (APSE). The adjoint equations are derived in a consistent way for a quasi-two-dimensional compressible flow in an orthogonal curvilinear coordinate system. The input/output framework provides a basis for optimal control studies. Analysis of two-dimensional boundary layers for Mach numbers between 0 and 1.2 show that wall and momentum forcing close to branch I of the neutral stability curve give the maximum magnitude of the gradient. Forcing at the wall gives the largest magnitude using the wall normal velocity component. In case of incompressible flow, the two-dimensional disturbances are the most sensitive ones to wall inhomogeneity. For compressible flow, the three-dimensional disturbances are the most sensitive ones. Further, it is shown that momentum forcing is most effectively done in the vicinity of the critical layer. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The temporal evolutions of small, streamwise elongated disturbances in the asymptotic suction boundary layer (ASBL) and the Blasius boundary layer (BBL) are compared. In particular, initial perturbations localized (δ-functions) in the wall-normal direction are studied, corresponding to an axi-symmetric jet coming out of a plane parallel to the flat plate. Analytical solutions are presented for the wall-normal and streamwise velocities in the ASBL case whereas both analytical and numerical methods are used for the BBL case. The initial position of the perturbation and its spanwise wave number are varied in a parameter study. We present results of maximum amplitudes obtained, the time to reach them, their position and optimal spanwise scales. Free-stream disturbances are shown to migrate towards the wall and reach their (negative) optimum inside the boundary layer. The migration is faster for the ASBL case and a larger amplitude is reached than for the BBL. For perturbations originating inside the boundary layer the amplitudes are overall larger and show the phenomenon of overshoot, i.e. positive amplitudes moving out of the boundary layer. The overall largest amplitudes are obtained for the BBL case, as in other studies, but it is shown that for free-stream disturbances initiated somewhere downstream the leading edge streak growth may be amplified due to suction since in the BBL the disturbance mainly advects above the boundary layer.  相似文献   

9.
The classical stability theory for multiphase flows, based on an analysis of one (most unstable) mode, is generalized. A method for studying an algebraic (non-modal) instability of a disperse medium, which consists in examining the energy of linear combinations of three-dimensional modes with given wave vectors, is proposed. An algebraic instability of a dusty-gas flow in a plane channel with a nonuniform particle distribution in the form of two layers arranged symmetrically with respect to the flow axis is investigated. For all possible values of governing parameters, the optimal disturbances of the disperse flow have zero wavenumber in the flow direction, which indicates their banded structure (“streaks”). The presence of dispersed particles in the flow increases the algebraic instability, since the energy of optimal disturbances in the disperse medium exceeds that for the pure-fluid flow. It is found that for a homogeneous particle distribution the increase in the energy of optimal perturbations is proportional to the square of the sum of unity and the particle mass concentration and is almost independent of particle inertia. For a non-uniform distribution of the dispersed phase, the largest increase in the initial energy of disturbances is achieved in the case when the dust layers are located in the middle between the center line of the flow and the walls.  相似文献   

10.
The optimal control of infinitesimal flow disturbances experiencing the largest transient gain over a fixed time span, commonly termed “optimal perturbations,” is undertaken using a variational technique in two- and three-dimensional boundary layer flows. The cost function employed includes various energy metrics which can be weighted according to their perceived importance, simplifying the task of determining which terms are essential for a “good” control scheme. In the accelerated boundary layers investigated, disturbance kinetic energy can be typically reduced by about one order of magnitude. However, it seems impossible to suppress completely over the entire control interval; “good” control strategies still permit approximately an order magnitude growth over the initial energy at some point in the interval. It is shown that the control effort efficiently targets the physical mechanisms behind transient growth. Received 5 February 2001 and accepted 15 June 2001  相似文献   

11.
We consider the problem of time- and energy consumption-optimal turn of a rigid body with spherical mass distribution under arbitrary boundary conditions on the angular position and angular velocity of the rigid body. The optimal turn problem is modified in the class of generalized conical motions, which allows one to obtain closed-form solutions for equations of motion with arbitrary constants. Thus, solving the optimal control boundary value problem is reduced to solving a system of nonlinear algebraic equations for the constants. Numerical examples are considered to illustrate the proximity between the solutions of the traditional and modified problems of optimal turn of a rigid body.  相似文献   

12.
The upstream perturbations that maximise the spatial energy growth in a boundary layer are called optimal perturbations. The optimal perturbations correspond to streamwise vortices and the downstream response corresponds to streamwise streaks.The aim of the present paper is to find a control by blowing and suction at the wall that zeros the energy of perturbation, when the initial disturbance is itself optimal. We shall also address the question: which kind of blowing and suction at the wall is most effective in controlling optimal disturbances?The problem is examined by a method of receptivity analysis based on a numerical solution of a system of equations adjoint to the linearised boundary layer equations. We shall investigate both cases of a flat and a concave wall.  相似文献   

13.
钟万勰院士于1991年首先提出计算矩阵指数的精细积分方法,其要点是2N类算法和增量存储。精细积分方法可给出矩阵指数在计算机意义上的精确解,为常微分方程的数值计算提供了高精度、高稳定性的算法,现已成功应用于结构动力响应、随机振动、热传导以及最优控制等众多领域。本文首先介绍矩阵指数精细积分方法的提出、基本思想和发展;然后依次介绍在时不变/时变线性微分方程、非线性微分方程以及大规模问题求解中发展起来的各种精细积分方法,分析了其优缺点和适用范围;最后介绍了精细积分方法的基本思想在两点边值问题、椭圆函数和病态代数方程等问题的扩展应用,进一步展示了该思想的特色。  相似文献   

14.
针对弹性力学平面问题偏微分方程组的位移法,引入多指数函数,提出了含未知参量的指数函数、三角函数和线性函数组合形式的位移函数解析构造解。建立了任意边界条件与未知参量之间所满足的非线性代数方程组,确定了边界节点条件和未知参量的数量关系。推导了具有对称位移边界的位移函数解析构造解。构建了位移函数构造解的精度判定方法。求解了具有对称位移边界条件的矩形板算例的位移解与误差分析。研究结果可为位移法理论和实际工程应用提供参考。  相似文献   

15.
In the region of transition from a two-dimensional laminar boundary layer to a turbulent one, three-dimensional flow occurs [1–3]. It has been proposed that this flow is formed as the result of nonlinear interaction of two-dimensional and three-dimensional disturbances predicted by linear hydrodynamic stability theory. Using many simplifications, [4, 5] performed a calculation of this interaction for a free boundary layer and a boundary layer on a wall with a very coarse approximation of the velocity profile. The results showed some argreement with experiment. On the other hand, it is known that disturbances of the Tollmin—Schlichting wave type can be observed at sufficiently high amplitude. This present study will use the method of successive linearization to calculate the primary two- and three-dimensional disturbances, and also the average secondary flow occurring because of nonlinear interaction of the primary disturbances. The method of calculation used is close to that of [4, 5], the disturbance parameters being calculated on the basis of a Blazius velocity profile. A detailed comparison of results with experimental data [1] is made. It developed that at large disturbance amplitude the amplitude growth rate differs from that of linear theory, while the spatial distribution of disturbances agree s well with the distribution given by the natural functions and their nonlinear interaction. In calculating the secondary flow an experimental correction was made to the amplitude growth rate.  相似文献   

16.
The propagation of disturbances in three-dimensional boundary layers under the conditions of a global and a local strong inviscid-viscous interaction is analyzed. A system of subcharacteristics is found based on the condition for the pressure-related subcharacteristic, and an algebraic relation that gives the propagation velocity of disturbances is obtained. The velocity of propagation of disturbances is calculated for two- and three-dimensional flows. The studied problem is of great importance for accurately formulating problems for three-dimensional unsteady boundary-layer equations and for constructing adequate computational models. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 3, pp. 116–127, May–June, 1999.  相似文献   

17.
Multibody system dynamics provides a strong tool for the estimation of dynamic performances and the optimization of multisystem robot design. It can be described with differential algebraic equations(DAEs). In this paper, a particle swarm optimization(PSO) method is introduced to solve and control a symplectic multibody system for the first time. It is first combined with the symplectic method to solve problems in uncontrolled and controlled robotic arm systems. It is shown that the results conserve the energy and keep the constraints of the chaotic motion, which demonstrates the efficiency, accuracy, and time-saving ability of the method. To make the system move along the pre-planned path, which is a functional extremum problem, a double-PSO-based instantaneous optimal control is introduced. Examples are performed to test the effectiveness of the double-PSO-based instantaneous optimal control. The results show that the method has high accuracy, a fast convergence speed, and a wide range of applications.All the above verify the immense potential applications of the PSO method in multibody system dynamics.  相似文献   

18.
In many load carrying thin shell structures, a connection section is arranged to transfer concentrated external forces to its main section. It is very important for the concentrated external forces to diffuse as uniformly as possible. Nevertheless the traditional design of uniform radial rib is not optimized. The present paper studies an integrated optimization procedure for design optimization of connection section. Variance constraint of node forces at the interface between the main section and connection section is firstly proposed as the evaluation criterion of concentrated force diffusion efficiency and introduced into the topology optimization formulation. Afterwards, for improving the manufacturability of the final design the topology optimization results are interpreted and further optimized by size or shape optimization. Two strategies of interpretation are examined. The first strategy is called strategy of making holes, which inserts a number of internal holes of regular geometric features and smooth boundary with B-spline curves in the continuum based on the topology optimization result. In the second strategy, an initial truss-like design is extracted from the characteristic of topology optimization result. Then a further shape and sizing optimization is followed to obtain the final optimal design. An example of design optimization of plane connection section is presented. The effectiveness of the present approach is demonstrated. The respective advantages and disadvantages of the two strategies are discussed.  相似文献   

19.
The turbulent flow in a compound meandering channel with a rectangular cross section is one of the most complicated turbulent flows, because the flow behaviour is influenced by several kinds of forces, including centrifugal forces, pressure‐driven forces and shear stresses generated by momentum transfer between the main channel and the flood plain. Numerical analysis has been performed for the fully developed turbulent flow in a compound meandering open‐channel flow using an algebraic Reynolds stress model. The boundary‐fitted coordinate system is introduced as a method for coordinate transformation in order to set the boundary conditions along the complicated shape of the meandering open channel. The turbulence model consists of transport equations for turbulent energy and dissipation, in conjunction with an algebraic stress model based on the Reynolds stress transport equations. With reference to the pressure–strain term, we have made use of a modified pressure–strain term. The boundary condition of the fluctuating vertical velocity is set to zero not only for the free surface, but also for computational grid points next to the free surface, because experimental results have shown that the fluctuating vertical velocity approaches zero near the free surface. In order to examine the validity of the present numerical method and the turbulent model, the calculated results are compared with experimental data measured by laser Doppler anemometer. In addition, the compound meandering open channel is clarified somewhat based on the calculated results. As a result of the analysis, the present algebraic Reynolds stress model is shown to be able to reasonably predict the turbulent flow in a compound meandering open channel. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

20.
载荷作用位置不确定条件下结构动态稳健性拓扑优化设计   总被引:5,自引:4,他引:1  
王栋 《力学学报》2021,53(5):1439-1448
研究当外载荷作用位置不确定时, 连续体结构动态稳健性拓扑优化设计. 在减小结构对简谐激励动响应的同时, 有效降低其对外载荷作用点随机扰动的敏感性. 首先基于非概率凸模型的方法, 将外激励作用位置的不确定性用有界区间变量表示. 其次通过对加载位置的导数分析, 获得了在激励位置扰动情况下结构动柔顺度的二阶泰勒展开式. 基于变密度方法, 推导出了动柔顺度对拓扑设计变量的一阶灵敏度显性表达式. 最后在材料体积约束下, 采用移动渐近优化算法并结合载荷扰动区间内灵敏度的最大绝对值, 对连续体结构进行动态稳健性拓扑优化设计, 并与传统载荷位置固定条件下的确定性优化结果进行对比, 充分展示考虑外激励作用位置扰动对结构拓扑构型设计及其动柔顺度变化的影响. 数值优化结果表明, 采用文中提出的方法所获得的结构动响应的稳健性更高, 能有效抵抗外激励作用位置的随机扰动. 只要少许增大材料的体积, 稳健性优化设计的动响应将在整个载荷扰动区域内优于确定性优化结果.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号