首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The excited states in the XANES region of 2-mercaptobenzooxazole and 2-mercaptobenzothiazole and of their sulfur-bridged dimeric analogues were investigated at the sulfur 1s-ionization threshold by means of synchrotron radiation. The electronic excitations were treated employing density functional theory calculations. The theoretical results obtained for the planar monomers and the bent dimers are in good accordance with the experimental spectra. They allow the assignment of the spectral structures in the region of the S 1s-electron binding energy to π* and σ* resonances involving orbitals of the >C=S and –C–Sx–C– (x=1,2) moieties of the molecules. The results are discussed in terms of antibonding π* and σ* interactions between the sulfur and the neighboring carbon atoms and of the symmetric and antisymmetric combinations of the respective σ* orbitals of the monomeric units.  相似文献   

2.
Dissociation of chlorobenzene via the lowest singlet excited state has been investigated by means of pump–probe femtosecond spectroscopy and spin–orbit corrected ab initio quantum chemistry. We have found that the so far accepted model with a 1ππ* → 3π/nσ* reaction mechanism has to be amended. We suggest that the mechanism goes via a transition from 1ππ* to a πσ* state that is to 90% a singlet. Further, three nuclear degrees of freedom required to describe the dissociation have been defined.  相似文献   

3.
Three spiro[pyrrolidine-2,3′-oxindoles], 1,1′,2,2′,5′,6′,7′,7′a-octahydro-2-oxo-1′-phenyl-spiro[3H-indole-3,3′-[3H]-pyrrolizine]-2′-carboxylic acid methyl ester (1), 1,1′,2,2′,5′,6′,7′,7′a-octahydro-2-oxo-1′-nitro-2′-phenyl-spiro[3H-indole-3, 3′-[3H]-pyrrolizine] (2) and 1,1′,2,2′,5′,6′,7′,7′a-octahydro-2-oxo-1′-nitro-2′-(4″-chlorophenyl)-spiro[3H-indole-3,3′-[3H]-pyrrolizine] (3) have been synthesized and their 1H, 13C and 15N spectra assigned. The chemical shift assignments are based on Pulsed Field Gradient (PFG) Double Quantum Filter (DQF) 1H, 1H correlation spectroscopy (COSY), PFG 1H, 13C Heteronuclear Multiple Quantum Coherence (HMQC) and PFG 1H,X (X = 13C and 15N) Heteronuclear Multiple Bond Correlation (HMBC) experiments. The single crystal X-ray structures of 1–3 have been determined. Compounds 1 and 2 crystallized in monoclinic space group C2/c and compound 3 in monoclinic space group P21/c, respectively. Also the ESI-TOF MS data of 1–3 are given.  相似文献   

4.
Reaction of Na[MCl4] (M=Pd or Pd) with the azo-containing phosphines Ph2P{1-(4-RC6H4N2)-2-OR′-C10H5} {R=Me (I), NMe2 (II); R′=C(O)Me} affords the complexes [MCl2L2] (1–4) in good yield. Complexes 1–4 have all been fully characterised by elemental analysis, 1H-, 13C{1H}-, and 31P{1H}-NMR spectroscopy and UV–visible spectroscopy. The use of 1 in the Heck reaction has been investigated and shown to effect up to 1000 turnovers.  相似文献   

5.
The epoxidation of cyclopentene with hydrogen peroxide catalyzed by 12-heteropolyacids of molybdenum and tungsten (H3PMo12−nWnO40, n = 1–11), 12-tungstophosphoric acid and 12-molybdophosphoric acid combined with cetylpyridinium bromide as a phase transfer reagent was carried out in acetonitrile. Among 13 heteropolyacids investigated, catalyst of H3PMo6W6O40 showed the highest activity, giving a conversion of 60% and a selectivity of 95% in the epoxidation of cyclopentene. The fresh catalysts and the catalysts under reaction condition were characterized by UV–vis, FT-IR and 31P NMR spectroscopy, which has revealed that all of the molybdotungstophosphoric acids were degraded in the presence of hydrogen peroxide to form a considerable amount of phosphorus-containing species. The active species resulted from H3PMo6W6O40 are new kinds of phosphorus-containing species, which is different from {PO4[WO(O2)2]4}3−.  相似文献   

6.
Rui Yang  Yu Gong  Mingfei Zhou   《Chemical physics》2007,340(1-3):134-140
The reaction products of palladium atoms with molecular oxygen in solid argon have been investigated using matrix isolation infrared absorption spectroscopy and quantum chemical calculations. In addition to the previously reported mononuclear palladium–dioxygen complexes: Pd(η2–O2) and Pd(η2–O2)2, dinuclear palladium–dioxygen complexes: Pd22–O2) and Pd22–O2)2 were formed under visible light irradiation and were identified on the basis of isotopic substitution and theoretical calculations. In addition, experiments doped with xenon in argon coupled with theoretical calculations suggest that the Pd(η2–O2), Pd22–O2) and Pd22–O2)2 complexes are coordinated by two argon or xenon atoms in solid argon matrix, and therefore, should be regarded as the Pd(η2–O2)(Ng)2, Pd22–O2)(Ng)2 and Pd22–O2)2(Ng)2 (NgAr or Xe) complexes isolated in solid argon.  相似文献   

7.
Reaction of the cationic complex [WI(CO)(NCMe){Ph2P(CH2)PPh2}(η2-MeC2ME)][BF4] with an equimolar amount of MX (MX = NaCl, NaBr, NaI, KNO2, KNO3, NaNCS or KOH) in acetone at room temperature gave the neutral complex [WIX(CO){Ph2P(CH2)PPh2}(η2-MeC2Me)] (1–7) in good yield. Complexes 1–7 have been characterized by elemental analysis (C, H and N), IR and 1H NMR spectroscopy.  相似文献   

8.
Thallium(I) complexes of heteroscorpionate hydrobis(3-phenyl-5-methylpyrazolyl)(3,5-dimethylpyrazol-yl)borate and hydrotris(3-phenylpyrazol-1-yl)borate were studied crystallographically. Both ligands were coordinated in κ3 fashion via N2 atoms of pyrazol-1-yl moieties. Both compounds crystallize as centrosymmetric dimers in which weak CH/π intra- and interdimer interactions are responsible for arrangement in crystal structure.  相似文献   

9.
Palladium(II) coordination complexes of nine 3- or 5-arylpyrazoles (phenyl, 2-bromophenyl, or 3-methoxyphenyl), as well as of 3,5-diphenylpyrazole, are reported. A cis-trans mixture of [PdL2Cl2] isomers is found in the case of 3-aryl-1-methylpyrazoles, the cis-isomers being transformed into trans by heating. Only trans isomers are isolated with the other ligands. Cyclopalladation of 3-ary]-1-methylpyrazoles can be performed with palladium(II) acetate, and the resultant μ-acetate bridged dimers can be transformed into μ-chloro bridged dimers or acetylacetonate monomers. The structures of the complexes have been characterized by 1H- and 13C-NMR spectroscopy.  相似文献   

10.
11.
Large-scale MRD CI calculations assign to AlP the ground state X 3Σ (9σ22) and a close-lying state 1 3Π (9σ3π3) (Te = 0.08 eV). Up to transition energies of 2.0 eV, other states are described by the configurations 9σ3π3 (11Π), 8σ24 (1 1Σ+), 9σ22 (1 1Δ and 2 1Σ+) and 9σ3π24π (1 5Π). The 2 3Π state, located at ≈ 2.30 eV, shows a shallow double minimum. Numerous perturbations are expected to induce predissociation upon 2 3Π. Multiplets arising from the occupation 8σ234π are clustered in the 3.25–3.50 eV region. Quintet states with the configuration 8σ9σ3π34π are bound, with Te values (in eV) of 3.80 (1 5Σ+), 4.44 (1 5Δ) and 4.88 (3 5Σ), respectively. The 9σ → 4s Rydberg members 5Σ and 3Σ lie in the 4.58–4.72 eV energy region. The first ionization potential (ionization to X4Σ of AlP+, 9σ → ∞) is estimated to be 7.65 eV. Ionization to the 1 2Σ and 1 2Π states of AlP+ is suggested to occur between 8.0 and 8.8 eV. The dipole moments of X 3Σ, 1 1Δ and 2 1Σ+ are close to 1.0 D, whereas the 1 1Σ+ state has μ = 3.49 D; 1 3Π and 1 1Π have dipole moments from 2.45 to 2.91 D. All low-lying states show a polarity Al+P. Finally, the electronic structure and transition energies of AlP are compared with those of the isoelectronic species BN, AIN, and SiP+.  相似文献   

12.
N-(ω-carboxyalkyl)morpholine hydrochlorides, OC4H8N(CH2)nCOOH·HCl, n=1–5, were obtained and analyzed by 13C cross polarization (CP) magic angle spinning (MAS) NMR, FTIR and PM3 calculations. The structure of N-(3-carboxypropyl)morpholine hydrochloride (n=3) has been solved by X-ray diffraction method at 100 K and refined to the R=0.031. The crystals are monoclinic, space group P21/c, a=14.307(3), b=9.879(2), c=7.166(1) Å, β=93.20(3)°, V=1011.3(3) Å3, Z=4. In this compound the nitrogen atom is protonated and two molecules form a centrosymmetric dimer, connected by two N+–HCl (3.095(1) Å) and two O–HCl (3.003(1) Å) hydrogen bonds. 13C CP MAS NMR spectra, contrary to the solution, showed non-equivalence of the ring carbon atoms. The PM3 calculations predict a molecular dimer without proton transfer for an HCl complex, while for an HBr complex an ion pairs with proton transfer, and reproduces correctly the conformation of both dimers but overestimates H-bond distances. Shielding constants calculated from the PM3 geometry of ion pairs gave a linear correlation with the 13C chemical shifts in solids.  相似文献   

13.
A new series of rigid-rod alkynylferrocenyl precursors with central fluoren-9-one bridge, 2-bromo-7-(2-ferrocenylethynyl)fluoren-9-one (1b), 2-trimethylsilylethynyl-7-(2-ferrocenylethynyl)fluoren-9-one (2) and 2-ethynyl-7-(2-ferrocenylethynyl)fluoren-9-one (3), have been prepared in moderate to good yields. The ferrocenylacetylene complex 3 can provide a direct access to novel heterometallic complexes, trans-[(η5-C5H5)Fe(η5-C5H4)CCRCCPt(PEt3)2Ph] (4), trans-[(η5-C5H5)Fe(η5-C5H4)CCRCCPt(PBu3)2CCRCC(η5-C5H4)Fe(η5-C5H5)] (5), [(η5-C5H5)Fe(η5-C5H4)CCRCCAu(PPh3)] (6) and [(η5-C5H5)Fe(η5-C5H4)CCRCCHgMe] (7) (R=fluoren-9-one-2,7-diyl), following the CuI-catalyzed dehydrohalogenation reactions with the appropriate metal chloride compounds. All the new complexes have been characterized by FTIR, 1H-NMR and UV–vis spectroscopies and fast atom bombardment mass spectrometry. The solid state molecular structures of 3, 5, 6 and 7 have been established by X-ray crystallography. The redox chemistry of these mixed-metal species has been investigated by cyclic voltammetry and oxidation of the ferrocenyl moiety is facilitated by the presence of the heavy metal centre and increased conjugation in the chain through the ethynyl and fluorenone linkage units.  相似文献   

14.
Single crystal X-ray structures (monoclinic space group P21) for methyl 3-oxo-5β-cholan-24-oate and methyl 3,12-dioxo-5β-cholan-24-oate have been solved and compared with HF/6-31G* optimised structures. In the crystalline packings the side chains are connected with weak OC(sp3)HO-type of interactions between C25–H and C24–O–C25 and the keto ends with weak C(sp3)HO=C-type of interactions between C4–H and O=C3. The orientations of the side chains, which steric configurations are of great importance to the biological activity of the molecules, are compared with the experimental structure of methyl 3-hydroxy-5β-cholan-24-oate. Probable reasons for the observed differences are discussed. In addition, 13C and 17O NMR chemical shifts of methyl 3-oxo-5β-cholan-24-oate and methyl 3,12-dioxo-5β-cholan-24-oate as well as the epimeric methyl 3-hydroxy-5β-cholan-24-oate and methyl 3β-hydroxy-5β-cholan-24-oate have been calculated (DFT/B3LYP/6-311G*) and compared with the experimental values by linear regression analyses. In general, the correspondence between the theoretical and experimental parameters is good or excellent.  相似文献   

15.
An investigation of the natural products chemistry of the red alga Delisea pulchra, collected from the Cape Banks, New South Wales, Australia, yielded eight new polyhalogenated furanones (1–7) and the previously reported metabolites 8–24). The structures of 1–8 were determined from the interpretation of their 1D and 2D NMR, UV, IR and mass spectral data. For the first time, complete 1H and 13C NMR data for compounds 14, 18, and 20-23 are reported.  相似文献   

16.
Absorption spectra of C60 have been measured in the ranges (a) 190–700 nm in n-hexane solutions at 300 K, (b) 390–700 nm in n-hexane and in 3-methylpentane solutions at 77 K. 40 vibronic bands were observed. They exhibit a large range of bandwidths and intensities, whose significance is discussed. Assignment of electronic transitions has been carried out using the results of theoretical calculations. Vibronic structures have been analyzed within the framework of theories of electronic transitions of polyatomic molecules applied to the Ih symmetry group. Nine allowed 1T1u1Ag transitions have been assigned in the 190–410 nm region. Observed and calculated allowed transition energies and oscillator strengths are compared. Detailed vibronic analyses of the 1 1T1u−1 1Ag and 2 1T1u−1 1Ag transitions illustrate the role of Jahn-Teller couplings. Orbitally forbidden singlet-singlet transitions are observed between 410 and 620 nm. Their vibronic structures were analyzed in terms of concurrent Herzberg-Teller and Jahn-Teller vibronic interactions. The 77 K spectra provided useful information on hot bands and on other aspects of the analyses. Vibronic bands belonging to triplet←singlet transitions were detected between 620 and 700 nm.  相似文献   

17.
Commercial non-food packaging materials of four different matrices (paper, low density polyethylene (LDPE), polyethylene-polypropylene (PE-PP) and high density polyethylene (HDPE)) were examined for the content of Cr, Ni, Cu, Zn, As, Mo, Cd, Sb, Ba, Hg, Tl, Pb and U. The examined samples (0.17–0.35 g) were digested in HNO3 and H2O2 (papers, LDPE and PE-PP) and in HNO3, H2SO4 and H2O2 (HDPE) using microwave assisted high pressure system. The inductively coupled plasma-time of flight-mass spectrometry (ICP-TOFMS) has been employed as the detection technique. All measurements were carried out using internal standardization. Yttrium and rhodium (50 ng g−1) were used as internal standards. The detection and quantification limits obtained were in the range of 0.005 ng g−1 (52Cr) to 0.51 ng g−1 (66Zn) and 0.015 μg g−1 (52Cr) to 2.02 μg g−1 (66Zn) of dry mass, respectively. The evaluated contents (mg kg−1) of particular elements in the examined materials were as follows: 0.22–219; <1.05–9.03; 1.25–112; <2.02–449; <0.98–<1.30; <0.36–2.06; <0.29–113; <0.22–44.1; <0.06–57.4; <0.66–<0.88; <0.08–0.24; <0.13–1222 and <0.08–0.44 for Cr, Ni, Cu, Zn, As, Mo, Cd, Sb, Ba, Hg, Tl, Pb and U, respectively.  相似文献   

18.
The reactions of the diruthenium carbonyl complexes [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]X (X=BF4 (1a) or PF6 (1b)) with neutral or anionic bidentate ligands (L,L) afford a series of the diruthenium bridging carbonyl complexes [Ru2(μ-dppm)2(μ-CO)22-(L,L))2]Xn ((L,L)=acetate (O2CMe), 2,2′-bipyridine (bpy), acetylacetonate (acac), 8-quinolinolate (quin); n=0, 1, 2). Apparently with coordination of the bidentate ligands, the bound acetate ligand of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ either migrates within the same complex or into a different one, or is simply replaced. The reaction of [Ru2(μ-dppm)2(CO)4(μ,η2-O2CMe)]+ (1) with 2,2′-bipyridine produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)2] (2), [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-bpy)]+ (3), and [Ru2(μ-dppm)2(μ-CO)22-bpy)2]2+ (4). Alternatively compound 2 can be prepared from the reaction of 1a with MeCO2H–Et3N, while compound 4 can be obtained from the reaction of 3 with bpy. The reaction of 1b with acetylacetone–Et3N produces [Ru2(μ-dppm)2(μ-CO)22-O2CMe)(η2-acac)] (5) and [Ru2(μ-dppm)2(μ-CO)22-acac)2] (6). Compound 2 can also react with acetylacetone–Et3N to produce 6. Surprisingly [Ru2(μ-dppm)2(μ-CO)22-quin)2] (7) was obtained stereospecifically as the only one product from the reaction of 1b with 8-quinolinol–Et3N. The structure of 7 has been established by X-ray crystallography and found to adopt a cis geometry. Further, the stereospecific reaction is probably caused by the second-sphere π–π face-to-face stacking interactions between the phenyl rings of dppm and the electron-deficient six-membered ring moiety of the bound quinolinate (i.e. the N-included six-membered ring) in 7. The presence of such interactions is indeed supported by an observed charge-transfer band in a UV–vis spectrum.  相似文献   

19.
A convenient synthesis of chiral lithium N-alkyl carbamates 1a–4a from chiral pyrrolidines 1–4, LiH and CO2 is described. The yields are good to excellent. A combined experimental (1H, 6Li-HOESY, cryoscopy) and theoretical study (B3LYP/6-311++G(d,p)) succeeded in assigning the predominant solution state structure of 1a.  相似文献   

20.
Reaction of optically active ketone complexes (+)-(R)-[(η5-C5H5)Re(NO)-(PPh3)(η1-O=C(R)(CH3)]+ BF4 (R = CH2CH3, CH(CH3)2m C(CH3)3, C6H5) with K(s-C4H9)3BH gives alkoxide complexes (+)-(RS)-(η5-C5H5)Re(NO)(PPh3)-(OCH(R)CH3) (73–90%) in 80–98% de. The alkoxide ligand is then converted to Mosher esters (93–99%) of 79–98% de.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号