首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
The heat capacity and the heat content of bismuth niobate BiNb5O14 were measured by the relaxation time method, DSC and drop method, respectively. The temperature dependence of heat capacity in the form C pm=455.84+0.06016T–7.7342·106/T 2 (J K–1 mol–1) was derived by the least squares method from the experimental data. Furthermore, the standard molar entropy at 298.15 K S m=397.17 J K–1 mol–1 was derived from the low temperature heat capacity measurement.  相似文献   

2.
The heat capacity of 4,4′-dinitrodiphenyl ether and 4-nitro-4′-biphenylcarboxylic acid were measured by adiabatic calorimetry (AC) in temperature ranges of 8–372 K and 10–372 K, respectively. The heat capacity of 4,4′-dinitrodiphenyl ether in the temperature range 323–500 K, the thermodynamic properties of fusion, and the purity of the ether were measured by differential scanning calorimetry (DSC). The main thermodynamic functions in the temperature range 5–370 K were calculated for both compounds using the heat capacities of adiabatic calorimetry. Related thermodynamic functions of 4,4′-dinitrodiphenyl ether in the temperature range 370–500 K were calculated on the basis of DSC data.  相似文献   

3.
The sample of LiCoO2 was synthesized, and the heat capacity was measured by adiabatic calorimetry between 13 and 300 K. The smoothed values of the heat capacity were calculated from the data. The thermodynamic functions, standard enthalpy, entropy and Gibbs energy, of LiCoO2 were calculated from the heat capacity and the numerical values are tabulated at selected temperatures from 15 to 300 K. The heat capacity, enthalpy, entropy, and Gibbs energy at T=298.15 K are 71.57 J K–1mol–1, 9.853 kJ mol–1, 52.45 J K–1 mol–1, –5.786 kJ mol–1, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
A three-dimensional lithium-based metal–organic framework Li2(2,6-NDC) (2,6-NDC = 2,6-naphthalene dicarboxylate) has been synthesized solvothermally and characterized by X-ray powder diffraction, elemental analysis, FT-IR spectroscopy, thermogravimetry and mass spectrometer analysis (TG–MS). The framework has exceptional stability and is stable to 863 K. The thermal decomposition characteristic of this compound was investigated through the TG–MS from 293 to 1250 K. The molar heat capacity of the compound was measured by temperature modulated differential scanning calorimetry (TMDSC) over the temperature range from 195 to 670 K for the first time. The thermodynamic parameters such as entropy and enthalpy versus 298.15 K based on the above molar heat capacity were calculated.  相似文献   

5.
Adiabatic calorimetry was used to measure heat capacities of cadmium fluoride in the range 5–340 K. Spline smoothing of the heat capacity versus temperature data allowed thermodynamic functions to be calculated within the range of the measurement temperatures. The thermal behavior of CdF2 was studied and showed no phase transitions within 300–723 K.  相似文献   

6.
The molar heat capacities of the binary mixture composed of water and n-butanol were measured with an adiabatic calorimeter in the temperature range 78–320 K. The functions of the heat capacity with respect to thermodynamic temperature were established. A glass transition, solid–solid phase transition and solid–liquid phase transition were observed. The corresponding enthalpy and entropy of the solid–liquid phase transition were calculated, respectively. The thermodynamic functions relative to a temperature of 298.15 K were derived based on the relationships of the thermodynamic functions and the function of the measured heat capacity with respect to temperature.  相似文献   

7.
The heat capacities of 2-benzoylpyridine were measured with an automated adiabatic calorimeter over the temperature range from 80 to 340 K. The melting point, molar enthalpy, ΔfusHm, and entropy, ΔfusSm, of fusion of this compound were determined to be 316.49±0.04 K, 20.91±0.03 kJ mol–1 and 66.07±0.05 J mol–1 K–1, respectively. The purity of the compound was calculated to be 99.60 mol% by using the fractional melting technique. The thermodynamic functions (HTH298.15) and (STS298.15) were calculated based on the heat capacity measurements in the temperature range of 80–340 K with an interval of 5 K. The thermal properties of the compound were further investigated by differential scanning calorimetry (DSC). From the DSC curve, the temperature corresponding to the maximum evaporation rate, the molar enthalpy and entropy of evaporation were determined to be 556.3±0.1 K, 51.3±0.2 kJ mol–1 and 92.2±0.4 J K–1 mol–1, respectively, under the experimental conditions.  相似文献   

8.
The heat capacity of natural mineral, pyromorphite Pb5(PO4)3Cl, was measured over the temperature range 4.2–320 K using low-temperature adiabatic calorimetry. An anomalous temperature dependence of heat capacity with a maximum at 273.24 K was observed between 250 and 290 K. The heat capacity, entropy, enthalpy, and reduced thermodynamic potential of pyromorphite were calculated and tabulated over the temperature range 5–320 K. The standard thermodynamic functions of the mineral are C p298.15o = 414.98 ± 0.44 J/(mol K), S 298.15o = 585.31 ± 0.99 J/(mol K), H 298.15oH 0o = 80.90 ± 0.08 kJ/mol, and Φ298.15o = 313.97 ± 0.84 J/(mol K).  相似文献   

9.
A pulse method was used to measure the thermal conductivity, specific heat capacity C p and thermal diffusivityξ of polycrystalline ZnIn2Se4 in the temperature range 300–600 K. The temperature dependence of λ, C p and ξ demonstrated a light decrease for this material in the temperature range 300–600 K, indicating that there is not a significant change in the structure in this temperature range; this was confirmed by DTA measurements. The results showed that the mechanism of heat transfer is due mainly to phonons; the contributions of electrons and dipoles are very small. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
A computerized adiabatic calorimeter for heat capacity measurements in the temperature range 80–400 K has been constructed. The sample cell of the calorimeter, which is about 50 cm3 in internal volume, is equipped with a platinum resistance thermometer and surrounded by an adiabatic shield and a guard shield. Two sets of 6-junction chromel-copel thermocouples are mounted between the cell and the shields to indicate the temperature differences between them. The adiabatic conditions of the cell are automatically controlled by two sets of temperature controller. The reliability of the calorimeter was verified through heat capacity measurements on the standard reference material α-Al2O3. The results agreed well with those of the National Bureau of Standards (NBS): within ±0.2% throughout the whole temperature region. The heat capacities of high-purity graphite and polystyrene were precisely measured in the interval 260–370 K by using the above-mentioned calorimeter. The results were tabulated and plotted and the thermal behavior of the two materials was discussed in detail. Polynomial expressions for calculation of the heat capacities of the two substances are presented. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

11.
The heat capacity of the solid indium nitride was measured, using the Calvet TG-DSC 111 differential scanning microcalorimeter (Setaram, France), in the temperature between (314–978 K). The temperature dependence of the heat capacity can be presented in the following form: C p=41.400+0.499·10−3 T−135502T −2−26169900 T −3.  相似文献   

12.
The heat capacity of gallium nitride has been measured by DSC method using DuPont Thermal Analyst 2100, DSC 951 unit in the temperature range (300–850 K). The temperature dependence of the heat capacity can be presented in the following form: C p=32.960+0.162·10−1 T+2360170T −2-775370000T −3.  相似文献   

13.
The aim of the article is to investigate the influence of particle size on titanium dioxide phase transformations. Nanocrystalline titanium dioxide powder was obtained through a hydrothermal procedure in an aqueous media at high pressure (in the range 25–100 atm) and low temperature (≤200 °C). The as-prepared samples were characterized with respect to their composition by ICP (inductive coupled plasma), structure and morphology by XRD (X-ray diffraction), and TEM (transmission electron microscopy), thermal behavior by TG (thermogravimetry) coupled with DSC (differential scanning calorimetry). Thermal behavior of nanostructured TiO2 was compared with three commercial TiO2 samples. The sequence of brookite–anatase–rutile phase transformation in TiO2 samples was investigated. The heat capacity of anatase and rutile in a large temperature range are reported.  相似文献   

14.
Dysprosium hafnate is a candidate material for as control rods in nuclear reactor because dysprosium (Dy) and hafnium (Hf) have very high absorption cross-sections for neutrons. Dysprosium hafnate (Dy2O3·2HfO2-fluorite phase solid solution) was prepared by solid-state as well as wet chemical routes. The fluorite phase of the compound was characterized by using X-ray diffraction (XRD). Thermal expansion characteristics were studied using high temperature X-ray diffraction (HTXRD) in the temperature range 298–1973 K. Heat capacity measurements of dysprosium hafnate were carried out using differential scanning calorimetry (DSC) in the temperature range 298–800 K. The room temperature lattice parameter and the coefficient of thermal expansion are 0.5194 nm and 7.69 × 10−6 K−1, respectively. The heat capacity value at 298 K is 232 J mol−1 K−1.  相似文献   

15.
The temperature dependence of heat capacity C p ° = f(T) of triphenylantimony bis(acetophenoneoximate) Ph3Sb(ONCPhMe)2 was measured for the first time in an adiabatic vacuum calorimeter in the range of 6.5–370 K and a differential scanning calorimeter in the range of 350–463 K. The temperature, enthalpy, and entropy of fusion were determined. Treatment of low-temperature (20 K ≤ T ≤ 50 K) heat capacity was performed on the basis of Debye’s theory of the heat capacity of solids and its multifractal model and, as a consequence, a conclusion was drawn on the type of structure topology. Standard thermodynamic functions C p °(T), H°(T) — H°(0), S°(T), and G°(T) — H°(0) were calculated according to the experimental data obtained for the compound mentioned in the crystalline and liquid states for the range of T → 0–460 K. The standard entropy of the formation of crystalline Ph3Sb(ONCPhMe)2 was determined at T = 298.15 K.  相似文献   

16.
The heat capacity of crystalline α-platinum dichloride was measured for the first time in the temperature intervals from 11 to 300 K (vacuum adiabatic microcalorimeter) and from 300 to 620 K (differential scanning calorimetry). In the 300–620 K temperature interval, the C° p values for α-PtCl2 (cr) coincide with the heat capacity of CrCl2 (cr) within the limits of experimental error, which made it possible to estimate the heat capacity of α-PtCl2 (cr) at higher temperatures. The approximating equation of the temperature dependence of the heat capacity in the interval from 298 to 900 K C° p (±0.8) = 63.5 + 21.4·10−3 T + 0.883·105/T 2 (J mol−1 K−1) was derived using the experimental values, as well as the literature data on the heat capacity of CrCl2 (cr). For the standard conditions, the C° p,298.15 and S°298.15 values are 70.92±0.08 and 100.9±0.33 J mol−1 K, respectively; H°298.15H°0 = 14 120±42 J mol−1. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1136–1138, June, 2008.  相似文献   

17.
Heat capacity of methacetin (N-(4-methoxyphenyl)-acetamide) has been measured in the temperature range 5.8–300 K. No anomalies in the C p(T) dependence were observed. Thermodynamic functions were calculated. At 298.15 K, the values of entropy and enthalpy are equal to 243.1 J K−1 mol−1 and 36360 J mol−1, respectively. The heat capacity of methacetin in the temperature range 6–10 K is well fitted by Debye equation C p = AT 3. The thermodynamic data obtained for methacetin are compared with those for the monoclinic and orthorhombic polymorphs of paracetamol.  相似文献   

18.
The temperature dependence of the heat capacity of cross-linked and branched (co)polymers based on tris- and bis-(pentafluorophenyl)germanes is studied in the temperature range of 6–7 to 535–570 K, using adiabatic vacuum and differential scanning calorimeters. In the indicated temperature range, physical transformations are revealed and their thermodynamic characteristics are determined. The obtained experimental data are used to calculate the thermodynamic functions of (co)polymers: C p /°, H°(T) - H°(0), S°(T) - S°(0), and G°(T) - H°(0) in the range of T → 0 to 535 K for the branched (co)polymer and from T → 0 to 500 K for the cross-linked polymer. Their standard entropies of formation are determined at 298.15 K. The obtained results are compared with analogous data for hyperbranched perfluorinated polyphenylenegermane studied earlier. The effect of the structure of polyphenylenegermanes on their thermodynamic properties is analyzed.  相似文献   

19.
Heat capacities, electrical conductivities and phase transition temperature of hafnium hydrides, HfHx (0.99≤x≤1.83), were studied using a direct heating pulse calorimeter and a differential scanning calorimeter from room temperature to above 500 K. The heat capacity of HfH1.83 was larger than that of pure hafnium and showed no anomaly of heat capacity. In contrast, there were λ-type peaks for the heat capacity and DSC curves for HfHx (1.1≤x≤1.6) near 385 and 356 K. The anomalies of heat capacity and electrical conductivity of HfHx (1.1≤x≤1.6) were considered the result of phase transition and order-disorder phase transition for hydrogen in the hafnium hydride lattice for HfHx (1.1≤x≤1.3).  相似文献   

20.
The molar heat capacities of the room temperature ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate (BMIBF4) were measured by an adiabatic calorimeter in temperature range from 80 to 390 K. The dependence of the molar heat capacity on temperature is given as a function of the reduced temperature X by polynomial equations, C P,m (J K–1 mol–1)= 195.55+47.230 X–3.1533 X 2+4.0733 X 3+3.9126 X 4 [X=(T–125.5)/45.5] for the solid phase (80~171 K), and C P,m (J K–1 mol–1)= 378.62+43.929 X+16.456 X 2–4.6684 X 3–5.5876 X 4 [X=(T–285.5)/104.5] for the liquid phase (181~390 K), respectively. According to the polynomial equations and thermodynamic relationship, the values of thermodynamic function of the BMIBF4 relative to 298.15 K were calculated in temperature range from 80 to 390 K with an interval of 5 K. The glass translation of BMIBF4 was observed at 176.24 K. Using oxygen-bomb combustion calorimeter, the molar enthalpy of combustion of BMIBF4 was determined to be Δc H m o= – 5335±17 kJ mol–1. The standard molar enthalpy of formation of BMIBF4 was evaluated to be Δf H m o= –1221.8±4.0 kJ mol–1 at T=298.150±0.001 K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号