首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
We investigate the newly discovered supersolid phase by solving in random-phase approximation the anisotropic Heisenberg model of the hard-core boson 4He lattice at zero temperature. We include nearest and next-nearest neighbor interactions and calculate exactly all pair correlation functions in a cumulant decoupling scheme. We demonstrate the importance of vacancies and interstitials in the formation of the supersolid phase. The supersolid phase is characterised by strong quantum fluctuations which are taken into account rigorously. Furthermore we confirm that the superfluid to supersolid transition is triggered by a collapsing roton minimum however is stable against spontaneously induced superflow, i.e. vortex creation.  相似文献   

2.
Using the Green's function approach, the density–density correlation function and the dielectric function in the random-phase approximation for a quasi-two-dimensional (quasi-2D) dipolar Bose gas are derived. From the pole of the density correlation function, by considering thermally induced roton-like excitations, the excitation spectrum of the system is calculated. It is shown that the position and depth of the roton minimum of the excitation spectrum are tunable by changing the temperature. To show how the position of the roton minimum influences the phenomenon of superfluidity, the superfluid density of the system is obtained and it is shown that the interplay of the thermal rotonization, contact and dipole–dipole interaction (DDI) can affect the superfluid fraction of a quasi-2D Bose gas. It is found that contact, DDI interactions, and thermally induced rotons enhance the fluctuations and reduce the superfluid density. In the absence of DDI and thermally induced rotons, the usual T3 dependence of superfluid density in 2D is obtained and the correction T4 term arises from DDI. It is shown that if the roton minimum is close to zero, the thermally induced rotons change the linear temperature dependence of the superfluid fraction, leading to a transition to nontrivial supersolid phase.  相似文献   

3.
Using large scale quantum Monte Carlo simulations and dual vortex theory, we analyze the ground state phase diagram of hard-core bosons on the kagome lattice with nearest-neighbor repulsion. In contrast with the case of a triangular lattice, no supersolid emerges for strong interactions. While a uniform superfluid prevails at half filling, two novel solid phases emerge at densities rho=1/3 and rho=2/3. These solids exhibit an only partial ordering of the bosonic density, allowing for local resonances on a subset of hexagons of the kagome lattice. We provide evidence for a weakly first-order phase transition at the quantum melting point between these solid phases and the superfluid.  相似文献   

4.
We study quantum phase transitions in the ground state of the two dimensional hard-core boson Hubbard Hamiltonian. Recent work on this and related models has suggested "supersolid" phases with simultaneous diagonal and off-diagonal long range order. We show numerically that, contrary to the generally held belief, the most commonly discussed "checkerboard" supersolid is thermodynamically unstable. Furthermore, this supersolid cannot be stabilized by next-near-neighbor interaction. We obtain the correct phase diagram using the Maxwell construction. We demonstrate that the "striped" supersolid is thermodynamically stable and is separated from the superfluid phase by a continuous phase transition.  相似文献   

5.
We study hard-core bosons with unfrustrated hopping (t) and nearest neighbor repulsion (U) (spin S=1/2 XXZ model) on the triangular lattice. At half filling, the system undergoes a zero temperature (T) quantum phase transition from a superfluid phase at small U to a supersolid at Uc approximately 4.45 in units of 2t. This supersolid phase breaks the lattice translation symmetry in a characteristic sqrt[3] x square root of 3 pattern, and is remarkably stable--indeed, a smooth extrapolation of our results indicates that the supersolid phase persists for arbitrarily large U/t.  相似文献   

6.
We demonstrate by neutron scattering that a localized superfluid component exists at high pressures within solid helium in aerogel. Its existence is deduced from the observation of two sharp phonon-roton spectra which are clearly distinguishable from modes in bulk superfluid helium. These roton excitations exhibit different roton gap parameters than the roton observed in the bulk fluid at freezing pressure. One of the roton modes disappears after annealing the samples. Comparison with theoretical calculations suggests that the model that reproduces the observed data best is that of superfluid double layers within the solid and at the helium-substrate interface.  相似文献   

7.
Starting from the assumption that the normal solid to supersolid (NS-SS) phase transition is continuous, we develop a phenomenological Landau theory of the transition in which superfluidity is coupled to the elasticity of the crystalline lattice. We find that the elasticity does not affect the universal properties of the superfluid transition, so that in an unstressed crystal the well-known anomaly in the heat capacity of the superfluid transition should also appear at the NS-SS transition. We also find that the onset of supersolidity leads to anomalies in the elastic moduli and thermal expansion coefficients near the transition and, conversely, that inhomogeneous lattice strains can induce local variations of the superfluid transition temperature, leading to a broadened transition.  相似文献   

8.
We determine the phase diagram of hard-core bosons on a triangular lattice with nearest-neighbor repulsion, paying special attention to the stability of the supersolid phase. Similar to the same model on a square lattice we find that for densities rho<1/3 or rho>2/3 a supersolid phase is unstable and the transition between a commensurate solid and the superfluid is of first order. At intermediate fillings 1/3相似文献   

9.
In this work,we theoretically study hard-core bosons on a two-dimensional square optical superlattice at T = 0.First of all,we present the mean field phase diagram of this model in terms of the chemical potential μ and the alternating potential strength △.Besides a superfluid(SF) phase at △ = 0 and a charge density wave(CDW)phase in the large △ at half filling,we demonstrate that a supersolid(SS) phase emerges in the moderate △.Then,we focus on the μ = 0,e.g.,half filling case,using large-S semi-classical spin-wave approximation to study the SS to CDW quantum phase transition.In particular,we calculate the ground-state energy and the superfluid density at the level of1/S correction.We then compare the spin-wave results with the large scale quantum Monte Carlo(QMC) simulations using the cluster stochastic series expansion(CSSE) algorithm,and find that while the spin wave method is intuitive with clear physical pictures,the quantum critical point is quite different from that of numerical results which is believed to be accurate.We suggest that as simple as it is,this model still exhibits strong quantum fluctuations near the quantum critical point beyond the power of semiclassical spin-wave approach.  相似文献   

10.
We investigate the ground states of a Bose-Einstein condensate of indirect excitons coupled to an electron gas. We show that in a properly designed system the crossing of a roton minimum into the negative energy domain can result in the appearance of the supersolid phase, characterized by periodicity in both real and reciprocal space. Accounting for the spin-dependent exchange interaction of excitons we obtain ferromagnetic supersolid domains. The Fourier spectra of excitations of weakly perturbed supersolids show pronounced diffraction maxima which may be detected experimentally.  相似文献   

11.
We investigate the thermodynamic properties of a field-induced supersolid phase in a 2D quantum antiferromagnet model. Using quantum Monte Carlo simulations, a very rich phase diagram is mapped out in the temperature-magnetic-field plane, with an extended supersolid region where a diagonal (solid) order coexists with a finite XY spin stiffness (superfluid). The various quantum and thermal transitions out of the supersolid state are characterized. Experimental consequences in the context of field-induced magnetization plateau materials are briefly discussed.  相似文献   

12.
We provide a semiquantitative tool, derived from first-principles simulations, for answering the question of whether certain types of defects in solid 4He support mass superflow. Although ideal crystals of 4He are not supersolid, the gap for vacancy creation closes when applying a moderate stress. While a homogeneous system becomes unstable at this point, the stressed core of crystalline defects (dislocations and grain boundaries) can turn superfluid.  相似文献   

13.
It is shown within the framework of mean-field theory that the gas of roton excitations in superfluid helium becomes unstable at a critical temperatureT c if the roton-roton interaction is attractive. The instability is characterized by a singularity of the specific heat and signals the transition into the normal fluid state. The roton energy gap remains finite atT c .  相似文献   

14.
The recent torsional oscillator results of Kim and Chan suggest a supersolid phase transition in solid 4He confined in Vycor. We have used a capacitive technique to directly monitor density changes for helium confined in Vycor at low temperature and have used a piezoelectrically driven diaphragm to study the pressure-induced flow of solid helium into the Vycor pores. Our measurements showed no indication of a mass redistribution in the Vycor that could mimic supersolid decoupling and put an upper limit of about 0.003 microm/s on any pressure-induced supersolid flow in the pores of Vycor.  相似文献   

15.
I show using Landau theory that quenched dislocations can facilitate the supersolid to normal solid transition, making it possible for the transition to occur even if it does not in a dislocation-free crystal. I make detailed predictions for the dependence of the supersolid to normal solid transition temperature T_{c}(L), superfluid density rho_{S}(T,L), and specific heat C(T,L) on temperature T and dislocation spacing L, all of which can be tested against experiments. The results should also be applicable to an enormous variety of other systems, including, e.g., ferromagnets.  相似文献   

16.
We show that a non-local form of the Gross-Pitaevskii equation describes not only long-wave excitations, but also the short-wave ones in Bose-condensate systems. At certain parameter values, the excitation spectrum mimics the Landau spectrum of quasi-particle excitations in superfluid helium with roton minimum. The excitation wavelength, at which the roton minimum exists, is close to the inter-particle interaction range. We determine how the roton gap and the effective roton mass depend on the interaction potential parameters, and show that the existence domain of the spectrum with a roton minimum is reduced if one accounts for an inter-particle attraction.  相似文献   

17.
We study in random-phase approximation the newly discovered supersolid phase of 4He and present in detail its finite temperature properties. 4He is described within a hard-core quantum lattice gas model, with nearest and next-nearest neighbour interactions taken into account. We rigorously calculate all pair correlation functions in a cumulant decoupling scheme. Our results support the importance of the vacancies in the supersolid phase. We show that in a supersolid the net vacancy density remains constant as function of temperature, contrary to the thermal activation theory. We also analyzed in detail the thermodynamic properties of a supersolid, calculated the jump in the specific heat which compares well to the recent experiments.  相似文献   

18.
We have measured the high-resolution infrared spectrum of the radical NO in the (2)Pi(1/2) state in superfluid helium nanodroplets. The features are attributed to the -doubling splitting and the hyperfine structure. The hyperfine interaction is found to be unaffected by the He solvation. For the Lambda-doubling splitting, we find a considerable increase by 55% compared to the gas phase. This is explained by a confinement of the electronically excited NO states by the surrounding He. The rotational level spacing is decreased to 76% of the gas phase value. The IR transition to the J=1.5 state is found to be homogeneously broadened. We attribute both observations to the coupling between the molecular rotation and phonon/roton excitations in superfluid (4)He droplets.  相似文献   

19.
We use quantum Monte Carlo simulations to determine the finite temperature phase diagram and to investigate the thermal and quantum melting of stripe phases in a two-dimensional hard-core boson model. At half filling and low temperatures the stripes melt at a first order transition. In the doped system, the melting transitions of the smectic phase at high temperatures and the superfluid smectic (supersolid) phase at low temperatures are either very weakly first order, or of second order with no clear indications for an intermediate nematic phase.  相似文献   

20.
We determine the finite-temperature phase diagram of the square lattice hard-core boson Hubbard model with nearest neighbor repulsion using quantum Monte Carlo simulations. This model is equivalent to an anisotropic spin-1/2 XXZ model in a magnetic field. We present the rich phase diagram with a first order transition between a solid and superfluid phase, instead of a previously conjectured supersolid and a tricritical end point to phase separation. Unusual reentrant behavior with ordering upon increasing the temperature is found, similar to the Pomeranchuk effect in 3He.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号