首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first investigated in the highly relativistic regime, using 100 TW class, 27 fs laser pulses. Quasi-monoenergetic multi- bunched beams with energies as high as multi-hundredMeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelfing and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5 GeV/cm.  相似文献   

2.
Overview of plasma-based accelerator concepts   总被引:2,自引:0,他引:2  
An overview is given of the physics issues relevant to the plasma wakefield accelerator, the plasma beat-wave accelerator, the laser wakefield accelerator, including the self-modulated regime, and wakefield accelerators driven by multiple electron or laser pulses. Basic properties of linear and nonlinear plasma waves are discussed, as well as the trapping and acceleration of electrons in the plasma wave. Formulas are presented for the accelerating field and the energy gain in the various accelerator configurations. The propagation of the drive electron or laser beams is discussed, including limitations imposed by key instabilities and methods for optically guiding laser pulses. Recent experimental results are summarized  相似文献   

3.
Laser wake field acceleration: the highly non-linear broken-wave regime   总被引:2,自引:0,他引:2  
We use three-dimensional particle-in-cell simulations to study laser wake field acceleration (LWFA) at highly relativistic laser intensities. We observe ultra-short electron bunches emerging from laser wake fields driven above the wave-breaking threshold by few-cycle laser pulses shorter than the plasma wavelength. We find a new regime in which the laser wake takes the shape of a solitary plasma cavity. It traps background electrons continuously and accelerates them. We show that 12-J, 33-fs laser pulses may produce bunches of 3×1010 electrons with energy sharply peaked around 300 MeV. These electrons emerge as low-emittance beams from plasma layers just 700-μm thick. We also address a regime intermediate between direct laser acceleration and LWFA, when the laser-pulse duration is comparable with the plasma period. Received: 12 December 2001 / Published online: 14 March 2002  相似文献   

4.
We suggest a novel method for the injection of electrons into the acceleration phase of particle accelerators, producing low-emittance beams appropriate even for the demanding high-energy linear collider specifications. We discuss the injection mechanism into the acceleration phase of the wakefield in a plasma behind a high-intensity laser pulse, which takes advantage of the laser polarization and focusing. The scheme uses the structurally stable regime of transverse wakewave breaking, when the electron trajectory self-intersection leads to the formation of a flat electron bunch. As shown in three-dimensional particle-in-cell simulations of the interaction of a laser pulse elongated in the transverse direction with an underdense plasma, the electrons injected via the transverse wakewave breaking and accelerated by the wakewave perform betatron oscillations with different amplitudes and frequencies along the two transverse coordinates. The polarization and focusing geometry lead to a way to produce relativistic electron bunches with an asymmetric emittance (flat beam). An approach for generating flat laser-accelerated ion beams is briefly discussed. The text was submitted by the authors in English.  相似文献   

5.
For the purpose of laser wakefield acceleration, it turns out that the injection of electron bunches longer than the plasma wavelength can also generate accelerated femtosecond bunches with a relatively low energy spread. This is of great interest because such injecting bunches can be provided, e.g., by photo cathode rf linacs. Here we show that when an e-bunch is injected into the wakefield, it is important to take into account the interaction of the injected bunch with the laser pulse in the vacuum region located in front of the plasma. We show that at low energies of the injected bunch, this leads to ponderomotive scattering of the bunch and results in a significant drop of the collection efficiency. For certain injection energies the ponderomotive scattering may result in a smaller energy spread in the accelerated bunch. It is found that the injection position in the laser wakefield plays an important role. Higher collection efficiency can be obtained for certain injection energies, when the bunch is injected in plasma at some distance from the laser pulse; the energy spread, however, is typically larger in this case. We also estimate the minimum trapping energy for the injected electrons and the length of the trapped bunch. PACS 52.38.Kd; 41.75.Jv; 41.85.Ar  相似文献   

6.
综述了有关激光尾场加速器、等离子体拍频波加速器、多束激光脉冲驱动的尾场加速器以及自调制激光尾场加速器的概念及其基本特性,概述了近期的实验结果。介绍了等离子体波的产生机理及等离子体波中电子的俘获和加速,并讨论了存在于激光等离子体加速器中的一些限制和今后发展前景。  相似文献   

7.
 综述了有关激光尾场加速器、等离子体拍频波加速器、多束激光脉冲驱动的尾场加速器以及自调制激光尾场加速器的概念及其基本特性,概述了近期的实验结果。介绍了等离子体波的产生机理及等离子体波中电子的俘获和加速,并讨论了存在于激光等离子体加速器中的一些限制和今后发展前景。  相似文献   

8.
Electron acceleration in plasma driven by circularpolarized ultraintense laser with asymmetric pulse are investigatedanalytically and numerically in terms of oscillation-center Hamiltonian formalism. Studies include wakefield acceleration, which dominates in blow-out or bubble regime and snow-plow acceleration which dominates in supra-bubble regime. By a comparison with each other it is found that snow-plow acceleration has lower acceleration capability. In wakefield acceleration, there exists an obvious optimum pulse asymmetry or/and pulse lengths that leads to the high net energy gain while in snow-plow acceleration it is insensitive to the pulse lengths. Power and linear scaling laws for wakefield and snow-plow acceleration respetively are observed from the net energy gain depending on laser field amplitude. Moreover, there exists also an upper and lower limit on plasma density for an effective acceleration in both of regimes.  相似文献   

9.
The acceleration of ions in the interaction of high intensity laser pulses with overdense plasmas is investigated with particle-in-cell simulations. For circular polarization of the laser pulses, high-density ion bunches moving into the plasma are generated at the laser-plasma interaction surface. A simple analytical model accounts for the numerical observations and provides scaling laws for the ion bunch energy and generation time as a function of pulse intensity and plasma density.  相似文献   

10.
The formation and acceleration of electron bunches resulting from the self-injection of electrons into the wake wave from the laser pulse moving through a sharp plasma boundary are investigated in one-dimensional geometry. It is shown that electron trapping in the accelerating wakefield is governed by the electron energy and has a threshold character. The acceleration of the trapped bunch is numerically simulated.  相似文献   

11.
The nonlinear interaction between counterpropagating laser beams in a plasma results in the generation of large (enhanced) plasma wakes. The two beams need to be slightly detuned in frequency, and one of them has to be ultrashort (shorter than a plasma period). Thus produced wakes have a phase velocity close to the speed of light and can be used for acceleration and compression of charged bunches, The physical mechanism responsible for the enhanced wake generation is qualitatively described and compared with the conventional laser wakefield mechanism. We also demonstrate that depending on the sign of the frequency difference between the lasers, the enhanced wake can be used as a “snow-plow” to accelerate and compress either positively or negatively charged bunches. This ability can be used in an electron-positron injector  相似文献   

12.
Electron acceleration in the laser-plasma bubble appeared to be the most successful regime of laser wake field acceleration in the last decade. The laser technology became mature enough to generate short and relativistically intense pulses required to reach the bubble regime naturally delivering quasi-monoenergetic bunches of relativistic electrons. The upcoming laser technology projects are promising short pulses with many times more energy than the existing ones. The natural question is how will the bubble regime scale with the available laser energy. We present here a parametric study of laser-plasma acceleration in the bubble regime using full three dimensional particle-in-cell simulations and compare numerical results with the analytical scalings from the relativistic laser-plasma similarity theory.  相似文献   

13.
A plasma-wakefield experiment is presented where two 60 MeV subpicosecond electron bunches are sent into a plasma produced by a capillary discharge. Both bunches are shorter than the plasma wavelength, and the phase of the second bunch relative to the plasma wave is adjusted by tuning the plasma density. It is shown that the second bunch experiences a 150 MeV/m loaded accelerating gradient in the wakefield driven by the first bunch. This is the first experiment to directly demonstrate high-gradient, controlled acceleration of a short-pulse trailing electron bunch in a high-density plasma.  相似文献   

14.
A design study has been carried out for a second-generation experiment on laser guiding and wakefield excitation in a channel. From simple scaling laws for the wakefield amplitude, dephasing length, the relativistic group velocity factor γg, and energy gain with and without guiding, we find that the parameter regime for a compact single stage GeV accelerator favors laser systems producing short pulses (10 fs⩽τ⩽100 fs), each containing an energy on the order of 100 mJ to a few J's. Taking the dephasing length as the maximum acceleration distance, plasma channels with lengths of 1-10 cm and densities of 1017-1019 cm-3 need to be produced; whereas the design study has been primarily concerned with diffraction and channel guiding, dephasing and depletion limits, and linear wakefield theory, aspects of the effect of the plasma wave on the evolution of the laser pulse are discussed. We find that transverse and longitudinal pulse distortions could indeed affect the generated plasma wave phase velocity and amplitude, and hence may limit the achievable energy gains over the one-dimensional (1-D) linear estimates. Some issues for experiments on prototype small accelerators (100 MeV-1 GeV, cm scale) are also discussed  相似文献   

15.
At Shanghai Jiao Tong University (SJTU) we have established a research laboratory for advanced acceleration research based on high-power lasers and plasma technologies. In a primary experiment based on the laser wakefield acceleration (LWFA) scheme, multi-hundred MeV electron beams of reasonable quality are generated using 20-40 TW, 30 femtosecond laser pulses interacting independently with helium, neon, nitrogen and argon gas jet targets. The laser-plasma interaction conditions are optimized for stabilizing the electron beam generation from each type of gas. The electron beam pointing angle stability and divergence angle as well as the energy spectra from each gas jet are measured and compared.  相似文献   

16.
Numerical studies are conducted on the electron injection into the first acceleration bucket of a laser wakefield by a weak counter-propagating laser pulse. It is shown that there are two injection mechanisms involved during the colliding laser interaction, the collective injection and stochastic injection. They are caused by the time-averaged ponderomotive force push and stochastic acceleration in the interfering fields, respectively. The threshold amplitude of the injection laser pulse is estimated for the occurrence of electron injection, which is close to that for stochastic acceleration and depends weakly upon the plasma density. The trapping of a large number of injection electrons can result in significant decay of the laser wakefield behind the first wave bucket.  相似文献   

17.
As applied to the problem of laser-induced ion acceleration, we have developed a theory for the expansion of a completely ionized thin two-ion-species target in the regime of a Coulomb explosion typical of the interaction of relativistically intense femtosecond laser pulses with nanofoils. Based on this theory and a simple numerical model, we have studied the generation of bunches of quasi-monoenergetic light ions and found their characteristics as a function of target parameters. We have performed a comparative analysis of the acceleration of light ions uniformly distributed in the target and concentrated in the form of a thin layer. For the production of high-quality accelerated ion beams, we have found optimal conditions that were qualitatively confirmed by our three-dimensional kinetic simulations of the laser pulse-thin target interaction.  相似文献   

18.
基于激光等离子体尾波解析模型,分析了毛细管中激光与等离子体相互作用,数值计算了尾波中基本物理量。计算结果表明:毛细管等离子体尾波幅度与毛细管半径有关,在较小的毛细管中尾波幅度更大。在相同的激光与等离子体参数情况下,与无界等离子体尾波相比较,毛细管等离子体尾波中电子空泡纵向尺度、电场强度峰值、角向自生磁场强度峰值提高了60%,这些特征都表明毛细管等离子体尾波更有利于电子加速。  相似文献   

19.
We present a novel high-yield Thomson scattering geometry that takes advantage of compact electron bunches, as available in advanced, low-emittance linear accelerators or laser wakefield accelerators. In order to avoid the restrictions on the X-ray photon yield imposed by the Rayleigh limit, we use ultrashort, pulse-front tilted laser pulses in a side-scattering geometry. Such a traveling-wave setup allows an overlap of electron and laser beams, even after propagating over distances much longer than the Rayleigh length. Experimental designs are discussed and optimized for different scattering angles. Specifically, to minimize group delay dispersion at large scattering angles >10°, we propose the use of varied-line spacing (VLS) gratings for spatio-temporal laser pulse shaping. Compared to head-on (180°) Thomson scattering, interaction lengths are in the centimeter to meter range and photon numbers for ultrashort X-ray pulses can increase by several orders of magnitudes.  相似文献   

20.
We present complete experimental characterization of the temporal shape of an intense ultrashort 200-TW laser pulse driving a laser wakefield. The phase of the pulse was uniquely measured by using (second-order) frequency-resolved optical gating. The pulses are asymmetrically compressed and exhibit a positive chirp consistent with the expected asymmetric self-phase-modulation due to photon acceleration or deceleration in a relativistic plasma wave. The measured pulse duration decreases linearly with increasing length and density of the plasma, in quantitative agreement with the intensity-dependent group velocity variation in the plasma wave.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号