首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The valence band states of the spinel semiconductor CdIn2S4 have been studied by UV photoemission spectroscopy. Contrary to what structural considerations would suggest the measured spectra closely resemble those of defect-zincblend CdIn2Se4 and of other II–III2–VI4 compounds. The likelihood of structural effects in the electronic states of this family is discussed in light of the above results.  相似文献   

2.
Photovoltaic spectra were measured at 300 and 100 K on AuCdIn2S4 Schottky barriers in the spectral range near the band edge of the compound. Analysis of the spectra gives the values of the direct and indirect gaps at both temperatures together with the associated phonon energies. The results are compared with the predictions of the most recent band calculations on CdIn2S4.  相似文献   

3.
The electronic structure and chemical bonding in HgGa2S4 crystals grown by vapor transport method are investigated with X-ray photoemission spectroscopy. The valence band of HgGa2S4 is found to be formed by splitted S 3p and Hg 6s states at binding energies BE=3-7 eV and the components at BE=7-11 eV generated by the hybridization of S 3s and Ga 4s states with a strong contribution from the Hg 5d states. At higher binding energies the emission lines related to the Hg 4f, Ga 3p, S 2p, S 2s, Hg 4d, Ga LMM, Ga 3p and S LMM states are analyzed in the photoemission spectrum. The measured core level binding energies are compared with those of HgS, GaS, AgGaS2 and SrGa2S4 compounds. The valence band spectrum proves to be independent on the technological conditions of crystal growth. In contrast to the valence band spectrum, the distribution of electron states in the bandgap of HgGa2S4 crystals is found to be strongly dependent upon the technological conditions of crystal growth as demonstrated by the photoluminescence analysis.  相似文献   

4.
The electronic band structure of the chalcogenide spinels In2S3 and CdIn2S4 has been studied using the FEFF8 program. It is shown that the valence band top is formed by the S p states mixed with the In s and In p states for In2S3 or with the Cd s, Cd p, In s, and In p states for CdIn2S4. Compared to In2S3, the presence of Cd atoms in the nearest environment of S atoms in CdIn2S4 does not considerably affect the electronic band structure. In CdIn2S4 the Cd 4d states, as well as the In 4d states, form a narrow localized band shifted deep into the valence band. The theoretical results are in good agreement with the experimental x-ray photoelectron and x-ray spectra.  相似文献   

5.
Four one-phonon Raman lines have been found in CdIn2S4 (ZnIn2S4) spinels at 92 (72) cm-1, 186 (184) cm-1, 246 (253) cm-1, and 367 (372) cm-1 for incident photon energies well below the energy gap EG ~ 2.4 (2.2) eV at 300 K. For photon energies close to EG, the 367 cm-1 mode underwent a resonant enhancement in CdIn2S4 and four infrared active but Raman forbidden F1u modes appeared in the CdIn2S4 and ZnIn2S4 Raman spectra: TO modes at 226 (221) cm-1 and 309 (312) cm-1, and LO modes at 274 (272) cm-1 and 340 (342) cm-1.  相似文献   

6.
The densities of valence states of amorphous As2S3 and Sb2S3 have been investigated by means of X-ray photoemission and ultraviolet photoemission spectroscopy. The spectra are interpreted on the basis of existing band structure calculations.  相似文献   

7.
Well-resolved photoluminescence spectra of CdIn2S4: Cr3+ recorded at 77K and 2K have been analysed. The R-lines from the doublet 2E-4A2 transition and their associated vibronic spectra have been assigned. These results yield a revised value for the crystal field parameter of B = 618 cm-1  相似文献   

8.
For the compounds FeGa2S4 and NiGa2S4 band structure calculations have been performed by the ab initio plane wave pseudo-potential method. The valence charge density distribution points to an ionic type of chemical bonding between the transition metal atoms and the ligand atoms. Two models for the pseudo-potentials are used to calculate the band structures: (a) only s and p electrons and (b) also the d-shells of the transition metal atoms are included in the pseudo-potentials. The differences between these two cases of band structures are discussed. Energy gap formation peculiarities are analysed for both crystals. Zak's elementary energy band concept is demonstrated for the energy spectra of the considered crystals.  相似文献   

9.
The electronic band structure of the partially inverse spinel MgIn2S4 has been calculated on the symmetry lines ΓΛL, ΓΔX and ΓΣK by the semiempirical pseudopotential method. The general features of the band structure of MgIn2S4 are quite similar to those of the normal spinel CdIn2S4. The conduction band minimum is located at Γ and the valence band maximum is along the Σ line. The indirect energy gap (Γ1cΣ4v) is 2.50 eV. The effects of magnesium vacancy and variations in the cation distribution and in the parameter u are examined and shown to be small.  相似文献   

10.
A density functional-based method is used to investigate the structural, elastic and thermodynamic properties of the cubic spinel semiconductors MgIn2S4 and CdIn2S4 at different pressures and temperatures. Computed ground structural parameters are in good agreement with the available experimental data. Single-crystal elastic parameters are calculated for pressure up to 10 GPa and temperature up to 1200 K. The obtained elastic constants values satisfy the requirement of mechanical stability, indicating that MgIn2S4 and CdIn2S4 compounds could be stable in the investigated pressure range. Isotropic elastic parameters for ideal polycrystalline MgIn2S4 and CdIn2S4 aggregates are computed in the framework of the Voigt–Reuss–Hill approximation. Pressure and thermal effects on some macroscopic properties such as lattice constant, volume expansion coefficient and heat capacities are predicted using the quasi-harmonic Debye model in which the lattice vibrations are taken into account.  相似文献   

11.
Exciton spectra are studied in CuGaXIn1−XS2 solid solutions by means of photoreflectivity and wavelength modulation spectroscopy at liquid nitrogen temperature. The exciton parameters, dielectric constants, and free carrier effective masses are deduced from experimental spectra by calculations in the framework of a model taking into account the spatial dispersion and the presence of a dead-layer. The crystal field and spin orbit valence band splitting is calculated as a function of X taking into account the energy position of excitonic lines. The energy band structure of CuGaXIn1−XS2 and CuGaXIn1−XSe2 compounds is derived from optical spectra at photon energies higher than the fundamental band gap. The energies of optical transitions are tabulated for X values from 0 to 1.  相似文献   

12.
Thin films of CdIn2S4 have been deposited on to stainless steel and fluorine-doped tin oxide (FTO)-coated glass substrates from aqueous acidic bath using an electrodeposition technique. Ethylene diamine tetra-acetic acid (EDTA) disodium salt is used as complexing agent to obtain good-quality deposits by controlling the rate of the reaction. The different preparative parameters like concentration of bath, deposition time, bath temperature, pH of the bath have been optimized by the photoelectrochemical (PEC) technique in order to get good-quality photosensitive material. Different techniques have been used to characterize CdIn2S4 thin films. Optical absorption shows the presence of direct transition with band gap energy 2.17 eV. The X-ray diffraction (XRD) analysis of the as-deposited and annealed films showed the presence of polycrystalline nature. Energy-dispersive analysis by X-ray (EDAX) study for the sample deposited at optimized preparative parameters shows that the In-to-Cd ratio is almost 2 and S-to-Cd ratio is almost 4. Scanning electron microscopy (SEM) for samples deposited at optimized preparative parameters reveals that spherical grains are uniformly distributed over the surface of the substrate indicates the well-defined growth of polycrystalline CdIn2S4 thin film. PEC characterization of the films is carried out by studying photoresponse, spectral response and photovoltaic output characteristics. The fill factor (ff) and power conversion efficiency (η) of the cell are 69 and 2.94%, respectively.  相似文献   

13.
The wavelength modulated reflectivity spectrum of ZnIn2S4 in the range 1.5–8.0 eV is presented. The first absorption onset near 3.0 eV has been related to transitions from sulphur p-like and cation s-like valence bands to a sulphur first group p-like conduction band. Evidence was also found for the existence of two M1-type singularities above 5.0 eV.  相似文献   

14.
Several transport properties have been studied on CdIn2S4 singlê crystals with different degrees of deviation from stoichiometry. The energy gap at 0 K was determined from the electrical measurements to be 2.2 eV. The anisotropy of the magnetoresistance effect was found and it was suggested that the minima of the conduction band were located at points along the [100] directions in k space. From an analysis of the mobility data it was found that the high resistivity of the samples is due to compensation of donors by acceptors introduced by excess sulphur. Several band parameters, the carrier scattering mechanisms and the impurity levels were determined. The thermal conductivity was measured from 4 K to 300 K and analysed by Callaway's formalism.  相似文献   

15.
Optical reflection spectra are measured and calculated in PbGa2S4 crystals in the region of resonances related to excitons with large oscillator strength and binding energy (Frenkel excitons). The splitting of the upper valence band in the center of the Brillouin zone due to crystal field (Δcf) and spin orbit (Δso) interaction are determined. Optical reflection spectra are measured and calculated according to Kramers-Kronig relations in the region of 3-6 eV in Ес and Ес polarizations, and the optical constants n, k, ε1 and ε2 are determined. The observed electronic transitions in PbGa2S4 crystals are discussed in the frame of theoretical energy band structure calculation for thiogallate crystals.  相似文献   

16.
Pseudopotential calculations have been carried out for the α, β and γ polytypic forms of the layer semiconductor ZnIn2S4, respectively, corresponding to space groups C53v, C13v and D33d. The required form factors are consistent with those used in our previous calculations for ZnS and CdIn2S4. The band structure of the α phase, the only one up to now for which optical data are available, compares quite satisfyingly with very recent photoemission and reflectivity experimental data. The computed band structures of the β and γ phases are very alike; on the contrary, interesting differences exist between these structures and the α phase which could easily be verified by experimental investigations.  相似文献   

17.
During thermal annealing or light irradiation, the changes in the valence states of vapour-deposited As2S3 and As4S4 films were observed by UPS. The experimental results reveal that an as-deposited As2S3 film contains considerable numbers of As4S4 molecular units, which polymerize or cross link to form a As2S3 glassy network on annealing or irradiation.  相似文献   

18.
In X-ray photoemission (XPS) studies on insulators, strong electric fields associated with surface charging can perturb the observed spectra. We find that the standard technique of flooding with thermal electrons to neutralize the net charge does not eliminate this effect for valence band spectra, but that the use of thin or (for photoconductors) illuminated samples does solve the problem. These conclusions are demonstrated by experiments revealing new structure in, and real differences between, the XPS valence band spectra of crystalline and amorphous As2S3.  相似文献   

19.
A photoluminescence (PL) study of the green-emitting SrGa2S4:Eu2+ phosphor is reported. Diffuse reflectance, excitation, and emission spectra were examined with the aim to enlarge the fundamental knowledge about the emission of the Eu2+ ion in this lattice. The thermal dependence of the radiative properties was investigated. In particular, the Stokes shift, the crystal field splitting and the activation energy of the thermal quenching were determined. By combining these results with the information presented in literature, we discussed the location of the Eu2+ levels relative to the valence and conduction bands of SrGa2S4.  相似文献   

20.
The electronic structure and the optical properties of In6S7 crystal are calculated by the first-principles full-potential linearized augmented plane wave method (FP-LAPW) using density functional theory (DFT) in its generalized gradient approximation (GGA). The calculated band structure shows that the In6S7 is a semiconductor with a direct band gap in good agreement with experimental studies. Furthermore, the dielectric tensor and the optical properties, such as absorption coefficient, refractive index, extinction coefficient, energy-loss spectrum and reflectivity, are derived and analyzed in the study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号