首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this paper, a semi-implicit finite element method is presented for the coupled Cahn–Hilliard and Navier–Stokes equations with the generalized Navier boundary condition for the moving contact line problems. In our method, the system is solved in a decoupled way. For the Cahn–Hilliard equations, a convex splitting scheme is used along with a P1-P1 finite element discretization. The scheme is unconditionally stable. A linearized semi-implicit P2-P0 mixed finite element method is employed to solve the Navier–Stokes equations. With our method, the generalized Navier boundary condition is extended to handle the moving contact line problems with complex boundary in a very natural way. The efficiency and capacity of the present method are well demonstrated with several numerical examples.  相似文献   

2.
This paper is devoted to the numerical simulation of variable density incompressible flows, modeled by the Navier–Stokes system. We introduce an hybrid scheme which combines a finite volume approach for treating the mass conservation equation and a finite element method to deal with the momentum equation and the divergence free constraint. The breakthrough relies on the definition of a suitable footbridge between the two methods, through the design of compatibility condition. In turn, the method is very flexible and allows to deal with unstructured meshes. Several numerical tests are performed to show the scheme capabilities. In particular, the viscous Rayleigh–Taylor instability evolution is carefully investigated.  相似文献   

3.
The non-equilibrium Richards equation is solved using a moving finite element method in this paper. The governing equation is discretized spatially with a standard finite element method, and temporally with second-order Runge–Kutta schemes. A strategy of the mesh movement is based on the work by Li et al. [R.Li, T.Tang, P.W. Zhang, A moving mesh finite element algorithm for singular problems in two and three space dimensions, Journal of Computational Physics, 177 (2002) 365–393]. A Beckett and Mackenzie type monitor function is adopted. To obtain high quality meshes around the wetting front, a smoothing method which is based on the diffusive mechanism is used. With the moving mesh technique, high mesh quality and high numerical accuracy are obtained successfully. The numerical convergence and the advantage of the algorithm are demonstrated by a series of numerical experiments.  相似文献   

4.
A finite element scheme to compute the dynamics of insoluble surfactant on a deforming free surface is presented. The free surface is tracked by the arbitrary Lagrangian–Eulerian (ALE) approach, whereas the surfactant concentration transport equation is approximated in a Lagrangian manner. Since boundary resolved moving meshes are used in the ALE approach, the surface tension, which may be a linear or nonlinear function of surfactant concentration (equation of state), and the Marangoni forces can be incorporated directly into the numerical scheme. Further, the Laplace–Beltrami operator technique, which reduces one order of differentiation associated with the curvature, is used to handle the curvature approximation. A number of 3D-axisymmetric computations are performed to validate the proposed numerical scheme. An excellent surfactant mass conservation without any additional mass correction scheme is obtained. The differences in using a linear and a nonlinear equation of state, respectively, on the flow dynamics of a freely oscillating droplet are demonstrated.  相似文献   

5.
A finite-element scheme based on a coupled arbitrary Lagrangian–Eulerian and Lagrangian approach is developed for the computation of interface flows with soluble surfactants. The numerical scheme is designed to solve the time-dependent Navier–Stokes equations and an evolution equation for the surfactant concentration in the bulk phase, and simultaneously, an evolution equation for the surfactant concentration on the interface. Second-order isoparametric finite elements on moving meshes and second-order isoparametric surface finite elements are used to solve these equations. The interface-resolved moving meshes allow the accurate incorporation of surface forces, Marangoni forces and jumps in the material parameters. The lower-dimensional finite-element meshes for solving the surface evolution equation are part of the interface-resolved moving meshes. The numerical scheme is validated for problems with known analytical solutions. A number of computations to study the influence of the surfactants in 3D-axisymmetric rising bubbles have been performed. The proposed scheme shows excellent conservation of fluid mass and of the total mass of the surfactant.  相似文献   

6.
The present paper presents a hybrid meshfree-and-Cartesian grid method for simulating moving body incompressible viscous flow problems in 3D space. The method combines the merits of cost-efficient and accurate conventional finite difference approximations on Cartesian grids with the geometric freedom of generalized finite difference (GFD) approximations on meshfree grids. Error minimization in GFD is carried out by singular value decomposition (SVD). The Arbitrary Lagrangian–Eulerian (ALE) form of the Navier–Stokes equations on convecting nodes is integrated by a fractional-step projection method. The present hybrid grid method employs a relatively simple mode of nodal administration. Nevertheless, it has the geometrical flexibility of unstructured mesh-based finite-volume and finite element methods. Boundary conditions are precisely implemented on boundary nodes without interpolation. The present scheme is validated by a moving patch consistency test as well as against published results for 3D moving body problems. Finally, the method is applied on low-Reynolds number flapping wing applications, where large boundary motions are involved. The present study demonstrates the potential of the present hybrid meshfree-and-Cartesian grid scheme for solving complex moving body problems in 3D.  相似文献   

7.
The present paper investigates the convergence of the Galerkin method for the dynamic response of an elastic beam resting on a nonlinear foundation with viscous damping subjected to a moving concentrated load. It also studies the effect of different boundary conditions and span length on the convergence and dynamic response. A train–track or vehicle–pavement system is modeled as a force moving along a finite length Euler–Bernoulli beam on a nonlinear foundation. Nonlinear foundation is assumed to be cubic. The Galerkin method is utilized in order to discretize the nonlinear partial differential governing equation of the forced vibration. The dynamic response of the beam is obtained via the fourth-order Runge–Kutta method. Three types of the conventional boundary conditions are investigated. The railway tracks on stiff soil foundation running the train and the asphalt pavement on soft soil foundation moving the vehicle are treated as examples. The dependence of the convergence of the Galerkin method on boundary conditions, span length and other system parameters are studied.  相似文献   

8.
刘永庆  程荣军  葛红霞 《中国物理 B》2013,22(10):100204-100204
The present paper deals with the numerical solution of the coupled Schrdinger-KdV equations using the elementfree Galerkin(EFG) method which is based on the moving least-square approximation.Instead of traditional mesh oriented methods such as the finite difference method(FDM) and the finite element method(FEM),this method needs only scattered nodes in the domain.For this scheme,a variational method is used to obtain discrete equations and the essential boundary conditions are enforced by the penalty method.In numerical experiments,the results are presented and compared with the findings of the finite element method,the radial basis functions method,and an analytical solution to confirm the good accuracy of the presented scheme.  相似文献   

9.
This paper is concerned with the analysis of dynamic deflection and acceleration of a concrete bridge which is subjected to a moving vehicle load. The bridge, to be constructed across the River Brahmaputra in India, consists of 20 main spans, and each main span is assumed to be double cantilever type with a small suspended span. The moving vehicle is modeled as one degree of freedom. The deflections and accelerations at specific locations on the bridge when the vehicle moves at constant speed are analyzed by using the finite element method.  相似文献   

10.
We design a Kohn–Sham equation solver based on hexahedral finite element discretizations. The solver integrates three schemes proposed in this paper. The first scheme arranges one a priori locally-refined hexahedral mesh with appropriate multiresolution. The second one is a modified mass-lumping procedure which accelerates the diagonalization in the self-consistent field iteration. The third one is a finite element recovery method which enhances the eigenpair approximations with small extra work. We carry out numerical tests on each scheme to investigate the validity and efficiency, and then apply them to calculate the ground state total energies of nanosystems C60, C120, and C275H172. It is shown that our solver appears to be computationally attractive for finite element applications in electronic structure study.  相似文献   

11.
This paper describes a finite element formulation for Landau–Lifschitz–Gilbert equation (LLGE) that is proved to converge as the time and space steps tend to 0 toward a weak solution of LLGE. An order two (in time) scheme is also given and numerical results are presented showing the applicability of the method.  相似文献   

12.
This paper is concerned with preconditioning the stiffness matrix resulting from finite element discretizations of Maxwell’s equations in the high frequency regime. The moving PML sweeping preconditioner, first introduced for the Helmholtz equation on a Cartesian finite difference grid, is generalized to an unstructured mesh with finite elements. The method dramatically reduces the number of GMRES iterations necessary for convergence, resulting in an almost linear complexity solver. Numerical examples including electromagnetic cloaking simulations are presented to demonstrate the efficiency of the proposed method.  相似文献   

13.
王超  王发杰  谷岩  王晓 《计算物理》2021,38(5):612-622
将局部基本解方法应用于静电场问题的模拟与分析。局部基本解方法是利用控制方程的基本解,基于局部理论和移动最小二乘原理提出的一种无网格算法。相比于有限元和有限差分等传统网格类方法,该方法仅需离散节点,避免了复杂的网格剖分难题。作为一种半解析数值技术,物理问题的基本解被作为插值基函数建立数值离散模型,从而保证了算法的较高精度。此外,与具有全局离散格式的无网格方法相比,局部基本解法更适用于高维复杂几何和大尺度模拟。二维和三维数值试验表明,该方法具有实施方便灵活,计算精度高和计算速度快等优势。为静电场仿真研究开辟新的途径,拓展了局部基本解方法的应用领域。  相似文献   

14.
In this paper, we consider a fully discrete local discontinuous Galerkin (LDG) finite element method for a time-fractional Korteweg-de Vries (KdV) equation. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. We show that our scheme is unconditionally stable and convergent through analysis. Numerical examples are shown to illustrate the efficiency and accuracy of our scheme.  相似文献   

15.
A new high-resolution scheme is developed for convection–diffusion problems in domains with moving boundaries. A finite element approximation of the governing equation is designed within the framework of a conservative Arbitrary Lagrangian Eulerian (ALE) formulation. An implicit flux-corrected transport (FCT) algorithm is implemented to suppress spurious undershoots and overshoots appearing in convection-dominated problems. A detailed numerical study is performed for P1 finite element discretizations on fixed and moving meshes. Simulation results for a Taylor dispersion problem (moderate Peclet numbers) and for a convection-dominated problem (large Peclet numbers) are presented to give a flavor of practical applications.  相似文献   

16.
In this paper, a new 27-point finite difference method is presented for solving the 3D Helmholtz equation with perfectly matched layer (PML), which is a second order scheme and pointwise consistent with the equation. An error analysis is made between the numerical wavenumber and the exact wavenumber, and a refined choice strategy based on minimizing the numerical dispersion is proposed for choosing weight parameters. A full-coarsening multigrid-based preconditioned Bi-CGSTAB method is developed for solving the linear system stemming from the Helmholtz equation with PML by the finite difference scheme. The shifted-Laplacian is extended to precondition the 3D Helmholtz equation, and a spectral analysis is given. The discrete preconditioned system is solved by the Bi-CGSTAB method, with a multigrid method used to invert the preconditioner approximately. Full-coarsening multigrid is employed, and a new matrix-based prolongation operator is constructed accordingly. Numerical results are presented to demonstrate the efficiency of both the new 27-point finite difference scheme with refined parameters, and the preconditioned Bi-CGSTAB method with the 3D full-coarsening multigrid.  相似文献   

17.
《Physica B: Condensed Matter》2000,275(1-3):238-247
This paper deals with the hysteresis characteristics analysis in PWM fed synchronous reluctance motor (SynRM) using a coupled finite element method (FEM) and Preisach's modeling, which is presented to analyze the characteristics under the effect of saturation and hysteresis loss. With regard to the PWM characteristics, a vector control inverter is combined with an analysis tool. Also, a moving mesh technique is used with regard to rotation due to velocity. The focus of this paper is the applied method of Preisach modeling for rotating machines and the characteristics analysis of a SynRM using the proposed method of analysis. For the propriety of proposed method of analysis, TMS320C31 DSP-installed experimental devices are used. And then, computer simulation and experimental result for the iλ loci, speed, current response, show the propriety of the proposed method. The characteristic analysis is performed in relation to the maximum efficiency condition for a SynRM in simulation and experiment.  相似文献   

18.
A hybrid finite element–boundary integral–characteristic basis function method (FE-BI-CBFM) is proposed for an efficient simulation of electromagnetic scattering by random discrete particles. Specifically, the finite element method (FEM) is used to obtain the solution of the vector wave equation inside each particle and the boundary integral equation (BIE) using Green's functions is applied on the surfaces of all the particles as a global boundary condition. The coupling system of equations is solved by employing the characteristic basis function method (CBFM) based on the use of macro-basis functions constructed according to the Foldy–Lax multiple scattering equations. Due to the flexibility of FEM, the proposed hybrid technique can easily deal with the problems of multiple scattering by randomly distributed inhomogeneous particles that are often beyond the scope of traditional numerical methods. Some numerical examples are presented to demonstrate the validity and capability of the proposed method.  相似文献   

19.
This paper intends to present a computational framework of aerodynamic analysis for a maglev (magnetically levitated) vehicle traveling over flexible guideways under oncoming wind loads. The guideway unit is simulated as a series of simple beams with identical span and the maglev vehicle as a rigid car body supported by levitation forces. To carry out the interaction dynamics of maglev vehicle/guideway system, this study adopts an onboard PID (proportional-integral-derivative) controller based on Ziegler-Nicholas (Z-N) method to control the levitation forces. Interaction of wind with high-speed train is a complicated situation arising from unsteady airflow around the train. In this study, the oncoming wind loads acting on the running maglev vehicle are generated in temporal/spatial domain using digital simulation techniques that can account for the moving effect of vehicle's speed and the spatial correlation of stochastic airflow velocity field. Considering the motion-dependent nature of levitation forces and the non-conservative characteristics of turbulent airflows, an iterative approach is used to compute the interaction response of the maglev vehicle/guideway coupling system under wind actions. For the purpose of numerical simulation, this paper employs Galerkin's method to convert the governing equations containing a maglev vehicle into a set of differential equations in generalized systems, and then solve the two sets of differential equations using an iterative approach with the Newmark method. From the present investigation, the aerodynamic forces may result in a significant amplification on acceleration amplitude of the running maglev vehicle at higher speeds. For this problem, a PID+LQR (linear quadratic regulator) controller is proposed to reduce the vehicle's acceleration response for the ride comfort of passengers.  相似文献   

20.
In this paper, we study a new stabilized method based on the local pressure projection to solve the semi-linear elliptic equation. The proposed scheme combines nonconforming finite element pairs NCP1−P1triangle element and two-level method, which has a number of attractive computational properties: parameter-free, avoiding higher-order derivatives or edge-based data structures, but have more favorable stability and less support sets. Stability analysis and error estimates have been done. Finally, numerical experiments to check estimates are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号