首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Evolution of the microstructure and optical properties of ZnO nanoparticles in a mild sol–gel synthesis process is studied. The ZnO nanostructures were prepared by reacting zinc acetate dihydrate with NaOH in water at 50−60 °C. Evolution of ZnO nanostructures with reaction time is studied using UV–Vis spectroscopy, transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopy techniques. During the process of Zn2+ hydroxylation, well defined rod-like crystals were formed within 15 min. Further hydroxylation leads to the formation of a gel-like structure within about 45 min. However, XRD, FT-IR and energy dispersive spectroscopy (EDS) confirmed that these initial products were zinc hydroxyl double salts (Zn-HDS), not ZnO. On ageing the reaction mixture, ZnO nanoparticles with wurtzite structure evolved.  相似文献   

2.
In the present work, high surface area mesoporous cobalt oxide (Co3O4) nanobelts have been synthesized by thermal treatment of cobalt hydroxide carbonate (CHC) precursors. CHC nanobelts were prepared by a facile hydrothermal method. Control experiments with variations in reaction time, solvent and different cobalt source revealed that temperature and sulfates are key factors in determining the formation of CHC nanobelts. Scanning electron microscopy and transmission electron microscopy images showed that the Co3O4 nanobelts consisted of mesoporous nanobelts with the average width of 40 nm. Brunauer–Emmett–Teller (BET) gas adsorption measurement further indicated that the products presented a rather large surface area (172.09 m2 g?1).  相似文献   

3.
Various morphologies of copper oxide (CuO) nanostructures have been synthesized by controlling the reaction parameters in a sonochemical assisted method without using any templates or surfactants. The effect of reaction parameters including molar ratio of the reactants, reaction temperature, ultrasound exposure time, and annealing temperature on the composition and morphology of the product(s) has been investigated. The prepared samples have been characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray (EDAX), and thermogravimetric analysis (TGA). It has been found that Cu2(OH)3NO3 nanoplatelets are achieved in mild conditions which can be then converted to various morphologies of CuO nanostructures by either using high concentrations of OH (formation of nanorods), prolonging sonication irradiation (nanoparticles), or thermal treatment (nanospheres). Application of the prepared CuO nanostructures was evaluated as supercapacitive material in 1 M Na2SO4 solution using cyclic voltammetry (CV) in different potential scan rates ranging from 5 to 100 mV s−1. The specific capacitance has been calculated using CV curves. It has been found that the pseudocapacitor performance of CuO can be tuned via employing morphologically controlled samples. Accordingly, the prolonged sonicated sample (nanoparticles) showed the high specific capacitance of 158 F.g−1.  相似文献   

4.
In this study, two different chemical solution methods were used to synthesize Zinc oxide nanostructures via a simple and fast microwave assisted method. Afterwards, the photocatalytic performances of the produced ZnO powders were investigated using methylene blue (MB) photodegradation with UV lamp irradiation. The obtained ZnO nanostructures showed spherical and flower-like morphologies. The average crystallite size of the flower-like and spherical nanostructures were determined to be about 55 nm and 28 nm, respectively. X-ray diffraction (XRD), scanning electronic microscopy (SEM), Brunauer–Emmett–Teller (BET), room temperature photoluminescence (RT-PL) and UV–vis analysis were used for characterization of the synthesized ZnO powders. Using BET N2-adsorption technique, the specific surface area of the flower-like and spherical ZnO nanostructures were found to be 22.9 m2/gr and 98 m2/gr, respectively. Both morphologies show similar band gap values. Finally, our results depict that the efficiency of photocatalytic performance in the Zinc oxide nanostructures with spherical morphology is greater than that found in the flower-like Zinc oxide nanostructures as well as bulk ZnO.  相似文献   

5.
Cu-BTC (BTC = 1,3,5-benzenetricarboxylate) metal organic framework (MOF) was synthesized using different solvent conditions with ultrasonic treatment. Solvent mixtures of water/N,N-dimethylformamide (DMF), water/ethanol were used for the reactions with or without a variety of bases under 20 kHz ultrasonically treated conditions. Prepared crystals were purified through 30 min of sonication to remove unreacted chemicals. Treatment time and ultrasonic power effects were compared to get optimum synthetic condition. The characterization of MOF powders was performed by scanning electron microscopy, X-ray powder diffraction, infrared-spectroscopy, thermo-gravimetric analysis and specific surface determination using the BET method. Isolated crystal yields varied with different solvent and applied ultrasonic power conditions. A high isolated crystal yield of 86% was obtained from water/ethanol/DMF solvent system after 120 min of ultrasonic treatment at 40% power of 750 W. Different solvent conditions led to the formation of Cu-BTC with different surface area, and an extremely high surface area of 1430 m2/g was obtained from the crystals taken with the solvent condition of water:DMF = 70:30.  相似文献   

6.
Biomorphic porous ZnO nanostructures were successfully synthesized via an aqueous sol–gel soaking process using pieces of apple flesh and skin as templates and employed for glucose direct electrochemical biosensor. The structure and morphology of ZnO nanostructures were characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). By modifying glassy carbon electrode with the biomorphic ZnO nanostructures and Nafion, two glucose biosensors were constructed and their direct electrochemistry of glucose oxidase (GOD) was successfully investigated by cyclic voltammetry (CV). The biomorphic porous ZnO nanostructures using apple skin template (S-ZnO) were more effective in facilitating the electron transfer of immobilized GOD than that of using flesh apple template (F-ZnO). This may be a result of the unique morphology and smaller average crystallite size of the S-ZnO nanostructure. GOD immobilized on Nafion-porous S-ZnO nanostructure composite display direct, reversible, and surface-controlled redox reaction with a detection limit of 10 μM, a response time of 7 s, high sensitivity of 23.4 μA/mM cm2 and a fast heterogeneous electron transfer rate with a rate constant (ks) of 3.9 s?1. It was found that S-ZnO significantly has improved the direct electron transfer between GOD and glassy carbon electrode with good stability and reproducibility.  相似文献   

7.
The plasma-treated pyrite (PTP) nanostructures were prepared from natural pyrite (NP) utilizing argon plasma due to its sputtering and cleaning effects resulting in more active surface area. The NP and PTP were characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Brunauer–Emmett–Teller (BET) and scanning electron microscopy (SEM) methods. The performance of the PTP was greater than NP for treatment of Reactive Red 84 (RR84) by the heterogeneous sono-Fenton process. The optimum amounts of main operational parameters were obtained as PTP of 4 g/L, initial dye concentration of 10 mg/L, pH of 5, and ultrasonic power of 300 W after 120 min of reaction time. Also, the effects of enhancers, and inorganic salts and t-butanol as hydroxyl radical scavengers on the degradation efficiency were investigated. Gas chromatography–mass spectroscopy analysis (GC–MS) was applied for detection of some degradation intermediates. Environmentally friendly plasma modification of the NP, in situ production of H2O2 and OH radicals, low leached iron concentration and repeated reusability at the milder pH are the significant benefits of the PTP utilization.  相似文献   

8.
The synergy of ultrasonication and the exposure to light radiation was found to be necessary in the formation of nanocomposites of silver and a protease alpha chymotrypsin. The reaction was carried out in aqueous medium and the process took just less than 35 min. Ultrasonication alone formed very negligible number of nanoparticles of <100 nm size whereas light alone produced enough number but the size of the particles was >100 nm.The effects of pH (in the range of 3–5, 9–10), ultrasonication time periods (0–30 min), ultrasonication intensity (33–83 W cm?2), energy of light radiation (short UV, long UV and Fluorescent light) and time period of exposure (5–60 min) to different light radiations were studied.The formation of nanocomposites under these effects was followed by surface plasmon resonance (SPR) spectra, dynamic light scattering (DLS), transmission electron microscopy (TEM). Ag–chymotrypsin nanocomposites of sizes ranging from 13 to 72 nm were formed using the synergy of ultrasonication and exposure to short UV radiation. Results show that ultrasonication promoted nuclei formation, growth and reduction of polydispersity by Ostwald ripening.  相似文献   

9.
Magnesium hydroxide nanostructures have been synthesized by the reaction of magnesium acetate with sodium hydroxide via sonochemical method. Reaction conditions such as the Mg2+ concentration, aging time and the ultrasonic device power show important roles in the size, morphology and growth process of the final products. The magnesium oxide nanoparticles have been prepared by calcination of magnesium hydroxide nanostructures at 400 °C. The magnesium hydroxide and magnesium oxide nanostructures were characterized by scanning electron microscopy (SEM), X-ray powder diffraction (XRD), thermal gravimetric (TG) and differential thermal analyses (DTA).  相似文献   

10.
Iron silicide nanostructures were grown on Si(001) by a strain-induced, self-assembly method. 1 nm iron was deposited by electron gun evaporation and subsequently annealed at 850 °C for different times, between 10 and 50 min. The formation of nanostructures was traced by reflection high energy electron diffraction, and the formed nanoobjects were characterized by scanning electron microscopy and atomic force microscopy. The electrical features were measured by IV, CV, deep level transient spectroscopy and conductive atomic force microscopy. As a function of the annealing time the size and the shape of the iron silicide nanoobjects varied, while they were orientated in normal directions. With the rising duration of annealing time the height of the nanostructures emerged, with moderate lateral size enhancement. The electrical characterization shows that the Fe-related defects dominated in all samples in a depth below the surface depending on the time of annealing. These defects are closer to the conduction band at the beginning of the annealing, and after 30 min their concentration is much reduced and they are closer to the valence band.  相似文献   

11.
Herein, we report the sonochemical reactions with MSU-X mesoporous alumina (m-Al2O3) in aqueous solutions. Sonication (f = 20 kHz, I = 30 W cm?2, Waq = 0.67 W mL?1, T = 36–38 °C, Ar) causes significant acceleration of m-Al2O3 dissolution in the pH range of 4–11. Moreover, power ultrasound has a dramatic effect on the textural properties and phase composition of m-Al2O3. Short-time sonication at pH = 4 leads to the formation of nanorods and nanofibers of boehmite, AlO(OH). Prolonged ultrasonic treatment causes high aspect morphology transformation to aggregated nanosheets in weakly acid solutions or plated nanocrystals in alkaline solutions. Sonochemical products in alkaline medium are composed principally from boehmite and small amounts of bayerite, Al(OH)3. Silent hydrolysis of m-Al2O3 yields boehmite at pH = 4 and bayerite at pH = 11. The effect of ultrasound on the textural properties of mesoporous alumina as well as on the transformation of nanosized bayerite to boehmite can be consistently attributed to the transient strong heating of the liquid shell surrounding the cavitation bubble which caused the chemical processes similar to those occurred during hydrothermal treatment.  相似文献   

12.
《Ultrasonics sonochemistry》2014,21(5):1736-1744
Three-dimensional (3D) well-defined SrMoO4 and SrMoO4:Ln3+ (Ln = Eu, Sm, Tb, Dy) hierarchical structures of obvious sphere-like shape have been successfully synthesized using a large-scale and facile sonochemical route without using any catalysts or templates. X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), energy dispersive X-ray spectroscopy (EDS), and photoluminescence (PL) spectra were used to characterize the samples. The intrinsic structural feature of SrMoO4 and external factor, namely the ultrasonic time and the pH value, are responsible for the ultimate shape evolutions of the product. The possible formation mechanism for the product is presented. Additionally, the PL properties of SrMoO4 and SrMoO4:Ln3+ (Ln = Eu, Sm, Tb, Dy) hierarchical structures were investigated in detail. The Ln3+ ions doped SrMoO4 samples exhibit respective bright red–orange, yellow, green and white light of Eu3+, Sm3+, Tb3+ and Dy3+ under ultraviolet excitation, and have potential application in the field of color display. Simultaneously, this novel and efficient pathway could open new opportunities for further investigating about the properties of molybdate materials.  相似文献   

13.
In the present paper, we reported the successful synthesis of dumbbell-like YF3 nanostructures with a high yield in a mixed system of water/N,N-dimethylformamide (DMF) under the assistance of ultrasound waves of 40 kHz with the ultrasonic power of 100% (200 W) at 65 °C for 2 h, employing Y2O3 (99.99%) and NH4F as the starting reactants. The product was characterized by means of powder X-ray diffraction (XRD), energy dispersive spectrometry (EDS), transmission electron microscopy (TEM), selected area electron diffraction (SAED) pattern and field-emission scanning electron microscopy (SEM). Some factors influencing the morphology of YF3 nanostructures, including the ultrasonic time and power, the amount of NH4F, and the ratio of water/DMF, were systematically investigated. Research showed that the morphology of YF3 could be tuned by the volume ratio of water/DMF. The roles of DMF and the ultrasonic wave in the formation of YF3 nanostructures were discussed.  相似文献   

14.
Copper (II) oxide nanoparticles were synthesized in an ultrasound assisted Fenton-like aqueous reaction between copper (II) cations and hydrogen peroxide. The reactions were initiated with the degradation of hydrogen peroxide by ultrasound induced cavitations at 0 °C or 5 °C and subsequent generation of the OH radical. The radical was converted into hydroxide anion in Fenton-like reactions and copper hydroxides were readily converted to oxides without the need of post annealing or aging of the samples. The products were characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller (BET) surface area analysis. Catalytic activity of the nanoparticles for the hydrogen peroxide assisted degradation of polycyclic aromatic hydrocarbons in the dark was tested by UV–visible spectroscopy with methylene blue as the model compound. The rate of the reaction was first order, however the rate constants changed after the initial hour. Initial rate constants as high as 0.030 min−1 were associated with the high values of surface area, i.e. 70 m2/g. Annealing of the products at 150 °C under vacuum resulted in the decrease of the catalytic activity, underlying the significance of the cavitation induced surface defects in the catalytic process.  相似文献   

15.
《Ultrasonics sonochemistry》2014,21(5):1707-1713
A novel template-free sonochemical synthesis technique was used to prepare NiO microspheres combined with calcination of NiO2.45C0.74N0.25H2.90 precursor at 500 °C. The NiO microspheres samples were systematically investigated by the thermograviometric/differential scanning calorimetry (TG/DSC), X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), fourier-transformed infrared spectroscopy (FT-IR), Brunnauer–Emmett–Teller (BET) nitrogen adsorption–desorption isotherms, laser particle size analyzer, and ultraviolet–visible spectroscopy (UV–Vis). The morphology of the precursor was retained even after the calcination process, and exhibited hierarchically porous sphericity. The morphology changed over the ultrasonic radiation time, and the shortest reaction time was 70 min, which was much less than 4 h for the mechanical stirring process. The mechanical stirring was difficult to form the complete hierarchically porous microsphere structure. The BET specific surface area and the median diameter of the hierarchically porous NiO microspheres were 103.20 m2/g and 3.436 μm, respectively. The synthesized NiO microspheres were mesoporous materials with a high fraction of macropores. The pores were resulted from the intergranular accumulation. The ultraviolet absorption spectrum showed a broad emission at the center of 475 nm, and the band gap energy was estimated to be 3.63 eV.  相似文献   

16.
We construct hierarchical MnO2 nanosheets @ fiberglass nanostructures via one-pot hydrothermal method without any surfactants. The morphology and structure of MnO2-modified fiberglass composites are examined by focus ion beam scanning electron microscopy (FIB/SEM), X-Ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). The birnessite-type MnO2 nanosheets are observed to grow vertically on the surface of fiberglass. Furthermore, the birnessite-type MnO2-fiberglass composites exhibit good ability for degradation of methylene blue (MB) in different pH levels. In neutral solution (pH 6.5–7.0), it achieves a high removal rate of 96.1% (2 h, at 60 °C) in the presence of H2O2; and in acidic environment (pH 1.5), 96.8% of MB solution (20 mg/L, 100 mL) is decomposed by oxidation within only 5 min. In principles, the rational design of MnO2 nanosheets-decorated fiberglass architectures demonstrated the suitability of the low-cost MnO2-modified fiberglass nanostructure for water treatment.  相似文献   

17.
C. Fan  G.P. Lopinski 《Surface science》2010,604(11-12):996-1001
The gas phase anhydrous reaction of glycidoxypropyldimethylethoxysilane (GPDMES) with a model hydroxylated surface has been investigated using high-resolution electron energy loss spectroscopy (HREELS) and scanning tunneling microscopy (STM). Water dissociation on the clean reconstructed (2 × 1)-Si(100) surface was used to create an atomically flat surface with ~ 0.5 ML of hydroxyl groups. Exposure of this surface to GPDMES at room temperature under vacuum was found to lead to formation of covalent Si–O–Si bonds although high exposures (6 × 108 L) were required for saturation. STM images at the early stages of reaction indicate that the reaction occurs randomly on the surface with no apparent clustering. The STM images together with semi-empirical (AM1) calculations provide evidence for hydrogen bonding interactions between the oxygen atoms in the molecule and surface hydroxyl groups at low coverage.  相似文献   

18.
Calcium silicate hydrate (CSH) consisting of nanosheets has been successfully synthesized assisted by a tip ultrasonic irradiation (UI) method using calcium nitrate (Ca(NO3)·4H2O), sodium silicate (Na2SiO3·9H2O) and sodium dodecyl sulfate (SDS) in water. Systematic studies found that reaction time of ultrasonic irradiation and concentrations of surfactant (SDS) in the system were important factors to control the crystallite size and morphologies. The products were characterized by X-ray power diffraction (XRD), field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectrometry (FTIR). The size–strain plot (SSP) method was used to study the individual contributions of crystallite sizes and lattice strain on the peak broadening of the CSH. These characterization techniques revealed the successful formation of a crystalline phase with an average crystallite size of about 13 nm and nanosheet morphology at a reaction time of 10 min UI with 0.2 g SDS in solvent which were found to be optimum time and concentrations of SDS for the synthesis of CSH powders.  相似文献   

19.
CoN films with nanoflake morphology are prepared by RF magnetron sputtering on Cu and oxidized Si substrates and characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), high resolution transmission electron microscopy (HR-TEM) and selected area electron diffraction (SAED) techniques. The thickness and composition of the films are determined by the Rutherford back scattering (RBS) technique confirming the stoichiometric composition of CoN with a thickness, 200 (± 10) nm. Li-storage and cycling behavior of nanoflake CoN have been evaluated by galvanostatic discharge–charge cycling and cyclic voltammetry (CV) in cells with Li–metal as counter electrode in the range of 0.005–3.0 V at ambient temperature. Results show that a first-cycle reversible capacity of 760 (± 10) mAhg? 1 at a current rate 250 mAg? 1(0.33 C) increases consistently to yield a capacity of 990 (± 10) mAhg? 1 after 80 cycles. The latter value corresponds to 2.7 mol of cyclable Li/mol of CoN vs. the theoretical, 3.0 mol of Li. Very good rate capability is shown when cycled at 0.59 C (up to 80 cycles) and at 6.6 C (up to 50 cycles). The coloumbic efficiency is found to be 96–98% in the range of 10–80 cycles. The average charge and discharge potentials are 0.7 and 0.2 V, respectively for the decomposition/formation of Li3N as determined by CV. However, cycling to an upper cut-off voltage of 3.0 V is essential for the completion of the “conversion reaction”. Based on the ex-situ-XRD, -HR-TEM and -SAED data, the plausible Li-cycling mechanism is discussed. The results show that nanoflake CoN film is a prospective anode material for Li-ion batteries.  相似文献   

20.
《Current Applied Physics》2010,10(3):853-857
Silver nanowires of 50–190 nm in diameters along with silver nanoparticles in the size range of 60–200 nm in prismatic and hexagonal shapes are synthesized through chemical process. The lengths of the silver nanowires lie between 40 and 1000 μm. The characterizations of the synthesized samples are done by X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–visible absorption spectroscopy. The syntheses have been done by using two processes. In the first process, relatively thicker and longer silver nanowires are synthesized by a soft template liquid phase method at a reaction temperature of 70 °C with methanol as solvent. In the second process, thinner silver nanowires along with silver nanoparticles are prepared through a polymer mediated polyol process at a reaction temperature of 210 °C with ethylene glycol as solvent. The variations of photoluminescence (PL) emission from the silver nanocluster dispersed in methanol as well as in ethylene glycol are recorded at room temperature under excitation wavelengths lying in between 300 and 414 nm. The blue–green PL emission is observed from the prepared samples and these emissions are assigned to radiative recombination of Fermi level electrons and sp- or d-band holes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号