首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
We consider a model for the elastic behavior of a polycrystalline material based on volume averages. In this case the effective elastic properties depend only on the distribution of the grain orientations. The aggregate is assumed to consist of a finite number of grains each of which behaves elastically like a cubic single crystal. The material parameters are fixed over the grains. An important problem is to find discrete orientation distributions (DODs) which are isotropic, i.e., whose Voigt and Reuss averages of the grain stiffness tensors are isotropic. We succeed in finding isotropic DODs for any even number of grains N≥4 and uniform volume fractions of the grains. Also, N=4 is shown to be the minimum number of grains for an isotropic DOD. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

2.
The concept of representative volume element (RVE) plays a key role in correlating the properties of microscopically heterogeneous materials with those of their macroscopically homogenized ones. However, up to now little quantitative knowledge is available about RVE scales or sizes of various engineering materials, which have been becoming a necessity due to the rapid development of, for instance, microelectromechanical systems. A new and convenient definition of the minimum RVE size is introduced. Then more than 500 kinds of cubic polycrystalline material in the planar stress state are numerically tested. The major finding from these numerical experiments is that the RVE size for the effective shear modulus (as well as the Young's modulus) depends roughly linearly upon the anisotropy degree of the single crystal, while the effective area modulus does not. For the latter observation a theoretical proof is also given. With a maximum relative error 5%, all the materials tested (with one exception) have a minimal RVE size of 20 or less times as large as the grain size.  相似文献   

3.
A rigorous method for the homogenization of general elastoplastic periodic lattices is presented. A discrete unit cell problem with finite number of degrees of freedom is solved for the determination of the overall elastic stiffness and ultimate strength of the lattice. Both static and kinematic methods are developed. It is shown that the overall yield strength domain of a large specimen, subjected to the so-called kinematically uniform boundary conditions, is asymptotically equal to the homogenized yield strength domain, as the size of the specimen goes to infinity. The method is applied to metallic honeycomb materials with arbitrary non-uniform cell wall thickness. New results concerning non-symmetric material distribution in the cell edges of the honeycomb are obtained. The model shows that the effects of this type of defect on the overall properties are less important than the already known effects of symmetric non-uniform cell wall thickness. Good agreement is observed between the proposed analytical beam model predictions and the finite element computations.  相似文献   

4.
This paper presents an exact solution for effective properties and local fields of periodic layered composites, obtained based on variational asymptotic method for unit cell homogenization, a recently developed micromechanics modeling framework. The layered composites could be made of multiple general anisotropic layers. This solution reproduces some published results when specialized to layered composites made of two orthotropic or isotropic layers and is located within the correctly interpreted bounds of the rules of mixtures according to Voigt and Reuss. It is also emphasized in this paper that the rules of mixtures according to Voigt and Reuss are absolute upper and lower bounds for the effective properties of layered composites if the bounds are interpreted in terms of the stiffness matrix or the fourth-order elasticity tensor. The confusion in a few recent papers regarding effective Young's modulus of layered isotropic composites could exceed the Voigt and Reuss estimates is clarified.  相似文献   

5.
针对复合材料与金属连接的一种新型连接形式-毛化接头,建立了其在拉伸载荷作用下的失效模式与破坏载荷的宏-细观预测模型。首先根据毛刺的分布选择合适的代表体积元,建立毛刺层单胞模型,施加周期性边界条件,通过有限元分析得到毛刺层的平均刚度参数。其次,基于累积损伤理论预测毛刺层的单胞强度,分析毛刺层的失效机理。最后,将毛刺层的等效材料参数赋予接头整体模型,预测接头的抗拉强度及失效模式。预测结果与试验值吻合良好。分析结果表明,毛化接头的承载能力和失效模式与毛刺的密度高度、搭接面积等因素密切相关,通过参数设计可获得较高的承载能力。  相似文献   

6.
Presented is a constitutive framework for modeling the dynamic response of polycrystalline microstructures, posed in a thermodynamically consistent manner and accounting for finite deformation, strain rate dependence of flow stress, thermal softening, thermal expansion, heat conduction, and thermoelastic coupling. Assumptions of linear and square-root dependencies, respectively, of the stored energy and flow stresses upon the total dislocation density enable calculation of the time-dependent fraction of plastic work converted to heat energy. Fracture at grain boundary interfaces is represented explicitly by cohesive zone models. Dynamic finite element simulations demonstrate the influences of interfacial separation, random crystallographic orientation, and grain morphology on the high-rate tensile response of a realistic two-phase material system consisting of comparatively brittle pure tungsten (W) grains embedded in a more ductile matrix of tungsten-nickel iron (W-Ni-Fe) alloy. Aspects associated with constitutive modeling of damage and failure in the homogenized material system are discussed in light of the computational results.  相似文献   

7.
EFFECTIVE ELASTIC MODULUS OF BONE-LIKE HIERARCHICAL MATERIALS   总被引:1,自引:0,他引:1  
A shear-lag model is used to study the mechanical properties of bone-like hierarchical materials.The relationship between the overall effective modulus and the number of hierarchy level is obtained.The result is compared with that based on the tension-shear chain model and finite element simulation,respectively.It is shown that all three models can be used to describe the mechanical behavior of the hierarchical material when the number of hierarchy levels is small.By increasing the number of hierarchy level,the shear-lag result is consistent with the finite element result.However the tension-shear chain model leads to an opposite trend.The transition point position depends on the fraction of hard phase,aspect ratio and modulus ratio of hard phase to soft phase.Further discussion is performed on the flaw tolerance size and strength of hierarchical materials based on the shear-lag analysis.  相似文献   

8.
A multi-scale representative volume element (RVE) for modeling the tensile behavior of carbon nanotube-reinforced composites is proposed. The RVE integrates nanomechanics and continuum mechanics, thus bridging the length scales from the nano- through the mesoscale. A progressive fracture model based on the modified Morse interatomic potential is used for simulating the behavior of the isolated carbon nanotubes and the FE method for modeling the matrix and building the RVE. Between the nanotube and the matrix a perfect bonding is assumed until the interfacial shear stress exceeds the corresponding strength. Then, nanotube/matrix debonding is simulated by prohibiting load transfer in the debonded region. Using the RVE, a unidirectional nanotube/polymer composite was modeled and the results were compared with corresponding rule-of-mixtures predictions. A significant enhancement in the stiffness of the polymer owing to the adding of the nanotubes is predicted. The effect of interfacial shear strength on the tensile behavior of the nanocomposite was also studied. Stiffness is found to be unaffected while tensile strength to significantly decrease with decreasing the interfacial shear strength.  相似文献   

9.
In this study, a procedure for estimating Young’s modulus of textured and non-textured polycrystalline materials was examined based on finite element analyses, which were performed using three-dimensional polycrystalline finite element models of a random structure, generated using the Voronoi tessellation. Firstly, the local stress/strain distribution and its influence on macroscopic elastic properties were evaluated. Then, the statistical relationship between Young’s modulus obtained from the finite element analyses and averaged Young’s modulus of all grains evaluated based on Voigt’s or Reuss’ model was investigated. It was revealed that the local stress/strain in the polycrystalline body is affected by crystal orientation and deformation constraint caused by adjacent grains, whereas only the crystal orientation affects Young’s modulus of the polycrystalline body when the number of grains is large enough. It was also shown that Young’s modulus correlates well with the averaged Young’s modulus of all grains, in which the size of grains is considered in the averaging. Finally, a procedure for estimating Young’s modulus of textured and non-textured materials was proposed. Young’s modulus of various materials can be estimated from the elastic constants of single crystal and the distribution of crystal orientation and size of grains, which can be obtained by using electron backscatter diffraction (EBSD).  相似文献   

10.
薛潇  张君华  孙莹  权铁汉 《力学学报》2022,54(11):3169-3180
蜂窝结构作为一种多孔材料具有轻质、高强度、高刚度的优点, 兼具隔声降噪、隔热等优良性能, 被广泛应用于交通运输、航空航天等领域. 传统直壁蜂窝在受力后容易出现应力集中的问题, 这将导致蜂窝夹层产生裂纹破坏, 缩短夹层板的使用寿命. 针对此问题本文设计了一种以圆弧曲壁蜂窝作为芯层的蜂窝夹层板, 基于单位载荷法推导了蜂窝芯的等效参数, 建立曲壁蜂窝夹层板的动力学模型, 利用Chebyshev-Ritz方法求解悬臂边界下曲壁蜂窝夹层板的固有频率, 并用有限元方法进行对比验证, 发现前5阶固有频率的误差均在5%以内, 每阶固有频率对应的振型一致. 通过3D打印聚乳酸(PLA)制备了曲壁蜂窝夹层板, 使用万能试验机对PLA拉伸试件进行准静态拉伸测定了打印材料的杨氏模量, 搭建振动试验平台对制备的曲壁蜂窝夹层板进行正弦扫频试验、定频谐波驻留试验和冲击试验. 对比发现3D打印模型振动试验获得的前5阶固有频率与理论模型和有限元模型的计算结果三者一致, 试验发现曲壁蜂窝芯在特定频段内具有一定的抗冲击性能. 研究结果将为曲壁蜂窝在振动和隔振方面的应用提供理论支持.   相似文献   

11.
The averaged elastic constants of polycrystals can be found by averaging the stresses (Voigt method [1]) or the strains (Reuss method [2]). Comparison of the elastic moduli, averaged according to Voigt and Reuss, with the experimental values shows that in the first case averaging gives values that are too high, and in the second values that are too low [3]. The reason for this is that direct averaging of the moduli with respect to arbitrary orientations of the crystallites does not take account of correlation effects. There are two ways of allowing for such correlations between polycrystal grains.  相似文献   

12.
13.
The calculation of the effective elastic moduli of inhomogeneous solids, which connect the stresses and strains averaged for the material, is accompanied by certain mathematical difficulties owing to correlation relationships of arbitrary orders. Neglect of correlation relationships leads to average elastic moduli, where averaging according to Voigt and Reuss establishes boundaries containing the effective elastic moduli [1]. Approximate values of the latter can be found by taking into account the correlation relationships of the second order in both calculation schemes [2, 3]. Another method of evaluating the true moduli consists of narrowing the boundaries of Voigt and Reuss on the basis of model representations [4-6]. The approximate effective elastic moduli for a series of polycrystals with various common-angle values are presented in [7]. An analysis of the effect of the correlation relationships between the grains of a mechanical mixture of isotropic components on the effective elastic moduli is carried out in [8], although in all the papers just mentioned the use of correlative corrections to narrow the range of elastic moduli is not investigated. Below it is shown that the calculation of the correlation corrections in the second approximation allows the range for the effective moduli to be narrowed.  相似文献   

14.
The Brazilian test is a widely used method for determining the tensile strength of rocks and for calibrating parameters in bonded-particle models (BPMs). In previous studies, the Brazilian disc has typically been trimmed from a compacted rectangular specimen. The present study shows that different tensile strength values are obtained depending on the compressive loading direction. Several measures are proposed to reduce the anisotropy of the disc. The results reveal that the anisotropy of the disc is significantly influenced by the compactibility of the specimen from which it is trimmed. A new method is proposed in which the Brazilian disc is directly generated with a particle boundary, effectively reducing the anisotropy. The stiffness (particle and bond) and strength (bond) of the boundary are set at less than and greater than those of the disc assembly, respectively, which significantly decreases the stress concentration at the boundary contacts and prevents breakage of the boundary particle bonds. This leads to a significant reduction in the anisotropy of the disc and the discreteness of the tensile strength. This method is more suitable for carrying out a realistic Brazilian test for homogeneous rock-like material in the BPM.  相似文献   

15.
A concurrent micromechanical model for predicting nonlinear viscoelastic responses of particle reinforced polymers is developed. Particles are in the form of solid spheres having micro-scale diameters. The composite microstructures are idealized by periodically distributed cubic particles in a matrix medium. Each particle is assumed to be fully surrounded by polymeric matrix such that contact between particles can be avoided. A representative volume element (RVE) is then defined by a single particle embedded in the cubic matrix. A spatial periodicity boundary condition is imposed to the RVE. One eighth unit-cell model with four particle and polymer subcells is generated due to the three-plane symmetry of the RVE. The solid spherical particle is modeled as a linear elastic material. The polymeric matrix follows nonlinear viscoelastic behaviors of thermorheologically simple materials. The homogenized micromechanical relation is developed in terms of the average strains and stresses in the subcells and traction continuity and displacement compatibility at the subcells’ interfaces are imposed. A stress–strain correction scheme is also formulated to satisfy the linearized micromechanical and the nonlinear constitutive relations. The micromechanical model provides three-dimensional (3D) effective properties of homogeneous composite responses, while recognizing microstructural geometries and in situ material properties of the heterogeneous medium. The micromechanical formulation is designed to be compatible with general displacement based finite element (FE) analyses. Experimental data and analytical micromechanical models available in the literature are used to verify the capability of the above micromechanical model for predicting the overall composite behaviors. The proposed micromodel is also examined in terms of computational efficiency and accuracy.  相似文献   

16.
The main purpose of this work is the computational simulation of the sensitivity coefficients of the homogenized tensor for a polymer filled with rubber particles with respect to the material parameters of the constituents. The Representative Volume Element (RVE) of this composite contains a single spherical particle, and the composite components are treated as homogeneous isotropic media, resulting in an isotropic effective homogenized material. The sensitivity analysis presented in this paper is performed via the provided semi-analytical technique using the commercial FEM code ABAQUS and the symbolic computation package MAPLE. The analytical method applied for comparison uses the additional algebraic formulas derived for the homogenized tensor for a medium filled with spherical inclusions, while the FEM-based technique employs the polynomial response functions recovered from the Weighted Least-Squares Method. The homogenization technique consists of equating the strain energies for the real composite and the artificial isotropic material characterized by the effective elasticity tensor. The homogenization problem is solved using ABAQUS by the application of uniform deformations on specific outer surfaces of the composite RVE and the use of tetrahedral finite elements C3D4. The energy approach will allow for the future application of more realistic constitutive models of rubber-filled polymers such as that of Mullins and for RVEs of larger size that contain an agglomeration of rubber particles.  相似文献   

17.
18.
The objective of this contribution is to develop an elastic-plastic-damage constitutive model for crystal grain and to incorporate it with two-scale finite element analyses based on mathematical homogenization method, in order to characterize the macroscopic tensile strength of polycrystalline metals. More specifically, the constitutive model for single crystal is obtained by combining hyperelasticity, a rate-independent single crystal plasticity and a continuum damage model. The evolution equations, stress update algorithm and consistent tangent are derived within the framework of standard elastoplasticity at finite strain. By employing two-scale finite element analysis, the ductile behaviour of polycrystalline metals and corresponding tensile strength are evaluated. The importance of finite element formulation is examined by comparing performance of several finite elements and their convergence behaviour is assessed with mesh refinement. Finally, the grain size effect on yield and tensile strength is analysed in order to illustrate the versatility of the proposed two-scale model.  相似文献   

19.
Finite element modeling of tube hydroforming requires information about the anisotropy of the extruded aluminum tube. Unlike sheet metals, the complex geometry of extruded tubes makes it difficult, except in extrusion direction, to directly measure material properties. Therefore, polycrystalline models provide a good alternative for calculating the anisotropy of the tube in all directions and under various loading conditions. Using a rate-independent single crystal yield surface and rigid plasticity, a Taylor-type polycrystalline model was developed and implemented into ABAQUS/Explicit finite element (FE) code using VUMAT. The constitutive model was then used to calculate the crystallographic texture evolution during the hydroforming of an extruded aluminum tube. Initial crystallographic texture measured using orientation imaging microscopy (OIM) and uniaxial tensile test data obtained along the extrusion direction were input to this FEA model. In order to efficiently and practically simulate the tube hydroforming process using the polycrystalline model, sensitivity to the number of grain orientation, total simulation time, and number of finite elements were studied. Predicted results agreed very well with experimentally measured strain obtained from tube hydroforming process.  相似文献   

20.
Dynamic deformation and failure mechanisms in polycrystalline ceramics are investigated through constitutive modeling and numerical simulation. Two ceramics are studied: silicon carbide (SiC, hexagonal crystal structure) and aluminum oxynitride (AlON, cubic crystal structure). Three dimensional finite element simulations incorporate nonlinear anisotropic elasticity for behavior of single crystals within polycrystalline aggregates, cohesive zone models for intergranular fracture, and contact interactions among fractured interfaces. Boundary conditions considered include uniaxial strain compression, uniaxial stress compression, and shear with varying confinement, all at high loading rates. Results for both materials demonstrate shear-induced dilatation and increasing shear strength with increasing confining pressure. Failure statistics for unconfined loading exhibit a smaller Weibull modulus (corresponding to greater scatter in peak failure strength) in AlON than in SiC, likely a result of lower prescribed cohesive fracture strength and greater elastic anisotropy in the former. In both materials, the predicted Weibull modulus tends to decrease with an increasing number of grains contained in the simulated microstructure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号