首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The magnetic hyperfine field of 111Cd in the C15 Laves phases RNi2 has been investigated by perturbed angular correlation (PAC) spectroscopy as a function of temperature for the rare earth constituents R = Nd, Sm, Gd, Tb, Dy, Ho, Er, and Tm.  相似文献   

2.
59Co spin echo NMR spectra in the magnetically ordered phase of the MgCu2 type RCo2 compounds (R = Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Tm) have been observed. For the RCo2 with the easy direction of magnetication parallel to the 〈011〉 or 〈111〉 direction, the 59Co hyperfine fields at two magnetically inequivalent Co sites are found to be antiparallel, revealing a large anisotropy in the 59Co hyperfine field. The results are discussed in terms of a large and anisotropic orbital moment of Co. The transferred hyperfine field due to rare earth spins is estimated from well resolved satellite lines observed in Tb1?xYxCo2. The nuclear quadrupole splitting in the magnetically ordered phase is found to be always larger than that in the paramagnetic phase.  相似文献   

3.
The magnetic properties of RNi4Ga (R=La, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm and Lu) compounds have been investigated. These compounds form in a hexagonal CaCu5 type structure with a space group P6/mmm. Compounds with the magnetic rare earths, R= Nd, Sm, Gd, Tb, Dy, Ho, Er and Tm, undergo a ferromagnetic transition at 5, 17, 20, 19, 12, 3.5, 8 and 6.5 K, respectively. The transition temperatures are smaller compared to their respective parent compounds RNi5. PrNi4Ga is paramagnetic down to 2 K. LaNi4Ga and LuNi4Ga are Pauli paramagnets. All the compounds show thermomagnetic irreversibility in the magnetically ordered state except GdNi4Ga.  相似文献   

4.
The time differential perturbed angular correlation technique has been used to study the combined magnetic and electric hyperfine interactions at the site of a111Cd impurity in the rare earth ferromagnets Gd, Tb, Dy, Ho, Er, and Tm at 4.2 °K. The following magnetic hyperfine fields at the site of111Cd have been found: ¦H hf ¦=340(7) kG in Gd, 275 (5) kG in Tb, 221 (4) kG in Dy, 116 (3) kG in Er and 60 (6) kG in Tm. In Ho two magnetically different sites were observed with magnetic fields of 159 (3) and 139 (3) kG. Both sites are equally populated. The coupling constantJ 5f of the conduction electron-4f interaction has been calculated for the different rare earth metals from the measured hyperfine fields by means of the RKKY theory.  相似文献   

5.
The magnetic properties have been studied for the series of RNi5−xCux intermetallics with R=Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu; x  ?2.5. Compositional dependences of magnetic susceptibility for the Pauli paramagnets (R=Y, La, Ce, Lu) and the Curie temperature for ferromagnets (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm) have maximum at x=0.2–0.4x=0.20.4 and 1, respectively. The substitution of Cu for Ni is accompanied by decreasing spontaneous magnetic moment and increasing coercive force of all ferromagnetic RNi5−xCux but GdNi5−xCux. These results are explained in the frame of band magnetism, random local crystal field, and domain wall pinning theories.  相似文献   

6.
Recent experimental results for the magnetic hyperfine field Bhf at the nuclei of s-p impurities such as 119Sn in intermetallic Laves phases RM2 (R=Gd, Tb, Dy, Ho, Er; M=Fe, Co) and 111Cd in R Co2, the impurity occupying a R site indicate that the ratio Bhf/μ3d exhibits different behavior when one goes from RFe2 to RCo2. In this work, we calculate these local moments and the magnetic hyperfine fields. In our model, Bhf has two contributions: one arising from the R ions, and the other arising from magnetic 3d-elements; these separate contributions allow the identification of the origin of different behavior of the ratio mentioned above. For 111Cd in RCo2 we present also the contributions for Bhf in the light rare earth Pr, Nd, Pm, Sm compounds. For the sake of comparison we apply also the model to 111Cd diluted in R Ni2. Our self-consistent magnetic hyperfine field results are in good agreement with those recent experimental data.  相似文献   

7.
Magnetic anisotropy of Fe/RE multilayers (RE=Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) was studied using 57Fe Mössbauer spectroscopy. Perpendicular magnetic anisotropy was observed in Fe/Pr, Fe/Nd, Fe/Tb, and Fe/Dy multilayers. The external field dependence of the direction of magnetic moments was also examined for Fe/Tb multilayers. The results imply that the perpendicular magnetic anisotropy originates from the single ionic anisotropy of RE at the interfaces.  相似文献   

8.
We have studied the low field susceptibility of TPb3 compounds (T = Pr, Nd, Sm, Tb, Dy, Ho) between 3 and 300 K. All these compounds except SmPb3 follow a Curie-Weiss law with a paramagnetic moment close to the free ion value. The compounds with Sm, Tb, Dy and Ho order antiferromagnetically.The magnetization of the three last compounds has been studied in static magnetic fields up to 85 koe.  相似文献   

9.
A crystal field (CF) investigation of the magnetic properties and heat capacities of RCuAs2 (R=Pr, Nd, Sm, Tb, Dy, Ho, Er and Yb) has been carried out using the observed average magnetic susceptibilities (1.8-300 K) of the title compounds. The CF parameters proposed for the systems show a systematic variation throughout the rare-earth series. Other physical properties dependent on the CF are also computed and compared with available experimental data. The experimental heat capacity data reported for a limited range of temperature agree well with computed heat capacity for all the compounds (except SmCuAs2 and YbCuAs2). CF J mixing was found to be appreciable for all the samples except YbCuAs2.  相似文献   

10.
Perturbed gamma–gamma angular correlation (PAC) technique was used to measure the magnetic hyperfine field (mhf) in RNiIn (R = Gd, Dy, Tb, Ho) intermetallic compounds using the 111In→111Cd and 140La→140Ce probe nuclei. The PAC spectra for 111Cd measured above magnetic transition temperature show a major fraction with a well defined quadrupole interaction for all compounds except GdNiIn where a single frequency was observed. PAC measurements below T C showed a combined electric quadrupole plus magnetic dipole interaction for 111Cd probe at In sites, and a pure magnetic interaction for 140Ce at R sites. The temperature dependence of mhf measured with 140Ce at R sites shows that the values of fields drop to zero at temperatures around the expected T C for each compound. However, in the measurements with 111Cd at In sites, the mhf values become zero at temperatures which are smaller than T C . The difference between the temperatures at which mhf is zero for 140Ce and 111Cd probes correlates with T C . For each compound this difference decreases with T C . The results are discussed in terms of the RKKY model for magnetic interactions and the existence of two magnetic systems, with distinct exchange interaction energies due to different types of atomic layers in these compounds.  相似文献   

11.
The time-differential perturbed angular correlations technique (TDPAC) has been employed for measuring the parameters of hyperfine interactions in earlier known RAl3 compounds, synthesized at high pressure (8 GPa) and high temperature, where R = La, Ce, Sm, Gd, Tb, Dy, Ho, Er, Yb and Lu. The 111Cd(111In) radioactive atom was used as a probe nucleus. The X-ray method has revealed that with the increase in the atomic number of a rare-earth element R, the obtained RAl3 high-pressure phases crystallize, respectively, into orthorhombic, hexagonal and cubic structures. It has been found that in the compounds containing R=La, Ce, Sm and Gd, a deviation from earlier known structural types and the formation of new ones is observed, which is associated with the change of the stoichiometric composition of the said compounds. The results of the PAC measurements have confirmed the deviation from the predetermined stoichiometric composition 1R:3Al for the compounds LaAl3, CeAl3, SmAl3 and GdAl3 and have verified the RAl3 stoichiometric structure for the other high-pressure phases obtained in this work.  相似文献   

12.
A study of theEXAFS associated with theK x-ray absorption discontinuity of germanium in pure germanium and in the rare-earth germanides RGe2 (where R=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Y) has been carried out. The Ge-Ge distances have been obtained in these compounds. Considering the phase to the RGe2 system, the bond lengths in these compounds have been determined. The values obtained by us for the RGe2 compounds (R=La, Ce, Pr, Nd, Sm, Gd, Dy and Y) agree with those obtained earlier by crystallographic methods. The bond lengths for the compounds TbGe2, HoGe2 and ErGe2 are also being reported.  相似文献   

13.
14.
Ternary tetragonal compounds of the composition R2Fe14B were observed for R = Y, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, and Lu. The lattice constants and the X-ray density of these compounds were determined. Also determined were the magnetic properties, comprising the temperature dependence of the magnetization in the range 4.2–700 K and the field dependence of the magnetization at 4.2 K in fields up to 20 T. These latter measurements were made in two mutually perpendicular directions, making it possible to determine the anisotropy fields. The magnetocrystalline anisotropy was found to consist of contributions due to the Fe and rare-earth sublattice, respectively.  相似文献   

15.
The magnetic hyperfine fields for 119Sn impurity atoms, localized in Ga sites of ferromagnetic intermetallic compounds RGa (R=Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, and Tm), were measured by the Mössbauer spectroscopy technique. At T=5 K, the hyperfine field value (Bhf) varies from 3.3 T in TmGa to 28.0 T in GdGa. Huge deviation from the proportionality between Bhf and the projection of the R3+ ion spin (Sz=(g−1)J) was found. As the atomic number of the R element increases, the Bhf/Sz ratio drastically decreases from 12.6 T for PrGa to 3.3 T for TmGa. This unexpected result can be explained by the strong dependency of Bhf value on the relationship between the Sn-R atomic separation (Rnn) and the radius of the magnetic 4f shell (R4f). In the framework of this concept, the available experimental data for Sn atom in the rare-earth compounds with non-magnetic sp elements were considered. The data may be described by the universal dependency on the single parameter, λ=Rnn/R4f.  相似文献   

16.
57Fe Mössbauer spectra are reported for the ThMn12 structure series of intermetallic compounds R(Fe11Ti) (R=Y, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu). The Mössbauer spectroscopy of oriented absorbers has been used to study the spin reorientation transitions exhibited by the members of the series where the second-order Stevens coefficient αJ of the rare-earth (Nd, Tb and Dy) is negative. A simple model has been established to deduce the canting angle from the Mössbauer spectra of oriented absorbers. The results are analyzed in terms of a crystal-field model. The crystal field parameters must be increased significantly to account for the observed large anisotropy in the Sm(Fe11Ti) compound, which may find applications as a permanent magnet.  相似文献   

17.
Magnetic properties of nine RE2Au compounds have been studied in fields of up to 19 kOe in the temperature range 4.2K–300K. It has been found that all compounds are paramagnetic at room temperature except Gd2Au. The compounds with Pr, Nd, Ho, Er and Tm exhibit Curie-Weiss behaviour with paramagnetic moments in close agreement with those expected for the free RE3+ ion. The moment of gold was found to be zero. The compounds with Pr, Nd, Tb, Dy, Er and Tm are antiferromagnetic at low temperatures. It appears that Ho2Au is ferromagnetically ordered below 4.5 K. No evidence for magnetic ordering was found for Y2Au. The compound with Tb exhibits metamagnetic behaviour.  相似文献   

18.
The extended x-ray absorption fine structure (EXAFS) associated with the GeK x-ray absorption discontinuity in pure germanium and in the intermetallics RGe2 (R=La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er and Y) has been studied. The Ge-R distances in these compounds have been determined by comparing the experimental phase shifts with the theoretical ones. The Ge-R distances in the compounds TbGe2, HoGe2 and ErGe2 are being reported for the first time in this work.  相似文献   

19.
DC magnetic susceptibility and resistivity measurements have been performed on 14 Tl(Sr1.5R0.5)CaCu2O7−δ compounds with R=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu. All samples except the Ce-doped compound show superconducting phase transition temperature around 80–90 K. The rare-earth atoms behave as local moments above the superconducting transition temperature of these compounds. Mechanism of filling of holes in the CuO2 plane can be employed to interpret the suppression or enhancement of superconductivity by rare-earth ions in Tl(Sr1.5R0.5)CaCu2O7−δ.  相似文献   

20.
The phenomenon of giant intrinsic magnetic hardness is investigated in compounds R1?x Sm x Co2Ni3 with R=Y, Pr, Gd, Tb, Er. Partial Er substitution for Sm actually increases magnetic hardness while all other substitutions decrease magnetic hardness. The strength of coercivity is thus dependent on both the sign and magnitude of the crystal field interaction. The temperature dependence of coercivity is complex in the case of Pr substitution as a result of competing effects from thermal activation and a decrease in anisotropy at low temperatures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号