首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple and sensitive multicommutated flow procedure, implemented by employing a homemade light emitting diode (LED) based photometer, has been developed for the determination of chromium (VI) and total chromium in water. The flow system comprised a set of four solenoid micro-pumps, which were assembled to work as fluid propelling and as commutating devices. The core of the detection unit comprised a green LED source, a photodiode and a homemade flow cell of 100 mm length and 2 mm inner diameter. The photometric procedure for the speciation of chromium in natural waters was based on the reaction of Cr (VI) with 1,5-diphenylcarbazide. Cr (III) was previously oxidized to Cr (VI) and determined as the difference between total Cr and Cr (VI). After carrying out the assays to select the best operational conditions the features of the method included: a linear response ranging from 10 to 200 μg l−1 Cr (III) and Cr (VI) (r = 0.999, n = 7); limits of detection of 2.05 and 1.0 μg l−1 for Cr (III) and Cr (VI), respectively; a relative standard deviation lower than 2.0% (n = 20) for a typical solution containing 50 μg l−1 Cr; a sampling throughput of 67 and 105 determinations per hour for total Cr and Cr (VI), respectively, and recovery values within the range of 93-108% for spiked concentrations of the order of 50 μg l−1.  相似文献   

2.
Themelis DG  Kika FS  Economou A 《Talanta》2006,69(3):615-620
A new rapid and sensitive FI assay is reported for the simultaneous direct spectrophotometric determination of trace Cr(VI) and Cr(III) in real samples. The method is based upon the reaction of Cr(VI) with chromotropic acid (CA) in highly acidic medium to form a water-soluble complex (λmax = 370 nm). Cr(III) reacts with CA only after its on-line oxidation to Cr(VI) by alkaline KIO4. The determination of each chromium species in the sample was achieved by absorbance differences. The calibration curves were linear over the range 3-4000 μg l−1 and 30-1200 μg l−1 for Cr(VI) and Cr(III), respectively, while the precision close to the quantitation limit was satisfactory in both cases (sr = 3.0% for Cr(VI) and 4.0% for Cr(III) (n = 10) at 10 and 50 μg l−1 level, respectively). The method developed proved to be adequately selective and sensitive (cL = 1 and 10 μg l−1 for Cr(VI) and Cr(III), respectively). The application of the method to the analysis of water samples (tap and mineral water) gave accurate results based on recovery studies (93-106%). Analytical results of real sample analysis were in good agreement with certified values.  相似文献   

3.
A novel method for selective determination of Cr(III) and Cr(VI) in environmental water samples was developed based on target-induced fluorescence quenching of glutathione-stabilized gold nanoclusters (GSH-Au NCs). Fluorescent GSH-Au NCs were synthesized by a one-step approach employing GSH as reducing/protecting reagent. It was found that Cr(III) and Cr(VI) showed pH-dependent fluorescence quenching capabilities for GSH-Au NCs, and thus selective determination of Cr(III) and Cr(VI) could be achieved at different pHs. Addition of EDTA was able to effectively eliminate the interferences from other metal ions, leading to a good selectivity for this method. Under optimized conditions, Cr(III) showed a linear range of 25–3800 μg L−1 and a limit of detection (LOD) of 2.5 μg L−1. The Cr(VI) ion demonstrated a linear range of 5–500 μg L−1 and LOD of 0.5 μg L−1. The run-to-run relative standard deviations (n = 5) for Cr(III) and Cr(VI) were 3.9% and 2.8%, respectively. The recoveries of Cr(III) and Cr(VI) in environmental water samples were also satisfactory (76.3–116%). This method, with its simplicity, low cost, high selectivity and sensitivity, could be used as a promising tool for chromium analysis in environmental water samples.  相似文献   

4.
Maltez HF  Carasek E 《Talanta》2005,65(2):537-542
A procedure for chromium speciation by F AAS using a flow system has been proposed. In this system, Cr(III) and Cr(VI) ions were adsorbed sequentially onto a mini-column packed with silica gel modified with zirconium phosphate and a mini-column packed with silica gel modified with zirconium oxide, respectively. The elution of Cr(III) and Cr(VI) was made with, respectively, nitric acid solution and tris(hydroxymethyl)methylamine (THAM) solution in reverse mode and determination by flame atomic absorption spectrometry without interference of the matrix. Chemical and flow variables as well as concomitant ions were studied in the developed procedure. The enrichment factor for Cr(III) and Cr(VI) was 20.8 and 24.9, respectively, using a preconcentration time of 3.75 min. The limit of detection for Cr(III) and Cr(VI) was 1.9, and 2.3 μg l−1, respectively. The precision of the method, evaluated as the relative standard deviation in solutions containing 100 μg l−1 of chromium species, by analyzing a series of seven replicates, was lower than 3.0%. The accuracy was assessed through recovery experiments of water samples and using another methodology.  相似文献   

5.
An on-line flow injection (FI) preconcentration-electrothermal atomic absorption spectrometry (ETAAS) method is developed for trace determination of chromium in drinking water samples by sorption on a conical minicolumn packed with activated carbon (AC) at pH 5.0. The chromium was removed from the minicolumn with 1.0% (v/v) nitric acid. An enrichment factor (EF) of 35-fold for a sample volume of 10 ml was obtained. The detection limit (DL) value for the preconcentration method proposed was 3.0 ng l−1. The precision for 10 replicate determinations at the 0.5 μg l−1 Cr level was 4.0% relative standard deviation (R.S.D.), calculate with the peak heights obtained. The calibration graph using the preconcentration system for chromium was linear with a correlation coefficient of 0.9992 at levels near the detection limits up to at least 50 μg l−1. The method was successfully applied to the determination of Cr(III) and Cr(VI) in drinking water samples.  相似文献   

6.
Starvin AM  Rao TP 《Talanta》2004,63(2):225-232
Diarylazobisphenol (DAB) 1 and diarylazobisphenol modified carbon 2 were synthesized and characterised. The latter has been used for solid phase extractive preconcentration and separation of trace amounts of uranium(VI) from other inorganics. In this, a column mode preconcentration of uranium(VI) was carried out in the pH range 4.0-5.0, eluted with 1.0 mol l−1 HCl and determined by an Arsenazo III spectrophotometric procedure. Calibration graphs were rectilinear over the uranium(VI) concentrations in the range 5-200 μg l−1. Five replicate determinations of 25 μg of uranium(VI) present in 1 l solution gave a mean absorbance of 0.032 with a relative standard deviation of 2.52%. The detection limit corresponding to three times the standard deviation of the blank was found to be 5 μg l−1. The accuracy of the developed preconcentration method in conjunction with the Arsenazo III procedure was tested by analysing MESS-3, a marine sediment certified reference material. Further, the above procedure has been successfully employed for analysis of uranium(VI) in soil and sediment samples.  相似文献   

7.
Safavi A  Maleki N  Shahbaazi HR 《Talanta》2006,68(4):1113-1119
A sensitive method for the determination of chromium ion(VI) in complex matrices such as crude oil and sludge is presented based on the decreasing effect of Cr(VI) on cathodic adsorptive stripping peak height of Cu-adenine complex. Under the optimum experimental conditions (pH 7.5 Britton-Robinson buffer, 5 × 10−5 M copper, 8 × 10−6 M adenine and accumulation potential −250 mV versus Ag/AgCl), a linear decrease of the peak current of Cu-adenine was observed, when the chromium(VI) concentration was increased from 5 μg L−1 to 120 μg L−1. Detection limit of 2 μg L−1 was achieved for 120 s accumulation time. The relative standard deviations (R.S.D., %) were 1.8% and 4% for chromium(VI) concentrations of 18 μg L−1 and 100 μg L−1, respectively. The method was applied to the determination of chromium(VI) in the presence of high levels of chromium(III), in various real samples such as crude oil, crude oil tank button sludge, waste water and tap water samples. Effects of foreign ions and surfactants on the voltammetric peak and the influences of instrumental and analytical parameters were investigated in detail. The accuracy of the results was checked by ICP and/or AA.  相似文献   

8.
A new, simple, rapid and sensitive separation, preconcentration and speciation procedure for chromium in environmental liquid and solid samples has been established. The present speciation procedure for Cr(III) and Cr(VI) is based on combination of carrier element-free coprecipitation (CEFC) and flame atomic absorption spectrometric (FAAS) determinations. In this method a newly synthesized organic coprecipitant, 5-chloro-3-[4-(trifluoromethoxy) phenylimino]indolin-2-one (CFMEPI), was used without adding any carrier element for coprecipitation of chromium(III). After reduction of chromium(VI) by concentrated H2SO4 and ethanol, the procedure was applied for the determination of total chromium. Chromium(VI) was calculated as the difference between the amount of total chromium and chromium(III). The optimum conditions for coprecipitation and speciation processes were investigated on several commonly tested experimental parameters, such as pH of the solution, amount of coprecipitant, sample volume, etc. No considerable interference was observed from the other investigated anions and cations, which may be found in natural water samples. The preconcentration factor was found to be 40. The detection limit for chromium(III) corresponding to three times the standard deviation of the blank (N = 10) was found 0.7 μg L−1. The present procedure was successfully applied for speciation of chromium in several liquid and solid environmental samples. In order to support the accuracy of the method, the certified reference materials (CRM-TMDW-500 Drinking Water and CRM-SA-C Sandy Soil C) were analyzed, and standard APDC-MIBK liquid-liquid extraction method was performed. The results obtained were in good agreement with the certified values.  相似文献   

9.
A novel on-line preconcentration and determination system based on a fiber-packed column was developed for speciation analysis of Cr in drinking water samples prior to its determination by flame atomic absorption spectrometry (FAAS). All variables involved in the development of the preconcentration method including, pH, eluent type, sample and eluent flow rates, interfering effects, etc., were studied in order to achieve the best analytical performance. A preconcentration factor of 32 was obtained for Cr(VI) and Cr(III). The levels of Cr(III) species were calculated by difference of total Cr and Cr(VI) levels. Total Cr was determined after oxidation of Cr(III) to Cr(VI) with hydrogen peroxide. The calibration graph was linear with a correlation coefficient of 0.999 at levels near the detection limit and up to at least 50 μg L−1. The relative standard deviation (R.S.D.) was 4.3% (C = 5 μg L−1 Cr(VI), n = 10, sample volume = 25 mL). The limit of detection (LOD) for both Cr(III) and Cr(VI) species was 0.3 μg L−1. Verification of the accuracy was carried out by the analysis of a standard reference material (NIST SRM 1643e “Trace elements in natural water”). The method was successfully applied to the determination of Cr(III) and Cr(VI) species in drinking water samples.  相似文献   

10.
The concentrations of chromium (III) and (VI) in fly ash from nine Australian coal fired power stations were determined. Cr(VI) was completely leached by extraction with 0.01 M NaOH solution and the concentration was determined by inductively coupled plasma atomic emission spectrometry (ICP-AES). This was confirmed by determining Cr(III) and Cr(VI) in the extracts of fly ash that had been spiked with chromium salts. These analytical measurements were done using a combination of ion-exchange chromatography and ICP-AES. The elutant was 0.05 M HNO3 containing 0.5%-CH3OH. When the column was operated at a flow rate of 1.2 ml min−1 and samples were injected by use of a sample loop with a volume of 100 μl, Cr(III) and Cr(VI) in sample solution was exclusively separated within approximately 10 min. The detection limits (3σ) were 5 ng for Cr(III) (0.050 mg l−1) and 9 ng for Cr(VI) (0.090 mg l−1), respectively. A relative standard deviation of 1.9% (n = 6) was obtained for the determination by IC-ICP-AES of 0.25 mg l−1 Cr(III) and Cr(VI).  相似文献   

11.
A new time-based flow injection on-line solid phase extraction method for chromium(VI) and lead determination using flame atomic absorption spectrometry was developed. The use of hydrophobic poly-chlorotrifluoroethylene (PCTFE)-beads as absorbent in on-line preconcentration system was evaluated. Effective formation of ammonium pyrrolidine dithiocarbamate complexes and subsequently retention in PCTFE packed column, was achieved in pH range 1.0-1.6 and 1.5-3.2 for Cr(VI) and Pb(II) ions, respectively. The sorbed analyte was efficiently eluted with isobutyl-methyl-ketone for on-line FAAS determination. The proposed packing material exhibited excellent chemical and mechanical resistance, fast kinetics for adsorption of Cr(VI) and Pb(II) permitting the use of high sample flow rates at least up to 15 mL min−1 without loss of retention efficiency. For a preconcentration time of 90 s, the sample frequency was 30 h−1, the enhancement factor was 94 and 220, the detection limit was 0.4 and 1.2 μg L−1, while the precision (R.S.D.) was 1.8% (at 5 μg L−1) and 2.1% (at 30 μg L−1) for chromium(VI) and lead, respectively. The applicability and the accuracy of the developed method were estimated by the analysis spiked water samples and certified reference material NIST-CRM 1643d (Trace elements in water) and NIST-SRM 2109 (chromium(VI) speciation in water).  相似文献   

12.
On-line preconcentration system for the selective, sensitive and simultaneous determination of chromium species was investigated. Dual mini-columns containing chelating resin were utilized for the speciation and preconcentration of Cr(III) and Cr(VI) in water samples. In this system, Cr(III) was collected on first column packed with iminodiacetate resin. Cr(VI) in the effluent from the first column was reduced to Cr(III), which was collected on the second column packed with iminodiacetate resin. Hydroxyammonium chloride was examined as a potential reducing agent for Cr(VI) to Cr(III).The effects of pH, sample flow rate, column length, and interfering ions on the recoveries of Cr(III) were carefully studied. Five millilitres of a sample solution was introduced into the system. The collected species were then sequentially washed by 1 M ammonium acetate, eluted by 2 M nitric acid and measured by ICP-AES. The detection limit for Cr(III) and Cr(VI) was 0.08 and 0.15 μg l−1, respectively. The total analysis time was about 9.4 min.The developed method was successfully applied to the speciation of chromium in river, tap water and wastewater samples with satisfied results.  相似文献   

13.
Hashemi P  Boroumand J  Fat'hi MR 《Talanta》2004,64(3):578-583
Three different agarose-based chelating adsorbents with, respectively, iminodiacetic acid (IDA), tris(2-aminoethyl)amine (TREN) and dipicolylamine (DPA) functional groups and an agarose-based anion exchanger (Q-Sepharose), were studied for the separation and preconcentration of Cr(III) and Cr(VI) species in water. Column recoveries of all the adsorbents were plotted against pH, and it was found that at pH 3.0 the IDA adsorbent selectively adsorbs Cr(III), with a 100 ± 1.0% recovery. The Q-Sepharose, on the other hand, accumulated only Cr(VI) at this pH, again with a recovery of 100 ± 1.0%. A dual column system was accordingly designed, using the two adsorbents in tandem, for the separation and preconcentration of the chromium species.The effects of pH, sample flow rate, column length, eluent type, eluent volume, acid concentration and interfering ions on the recoveries of Cr(III) and Cr(VI) were carefully studied. It was shown that by passing test solutions, at pH 3.0; through the dual column system, the two chromium species could be individually collected on the columns, respectively, and eluted, one after the other. A portion of 2 mol l−1 hydrochloric acid was used for elution of each column before final measurement by flame AAS method. A preconcentration factor of 12, a detection limit of 7.7 ± 0.1 μg l−1 and a precision expressed as relative standard deviation of 0.4% (at 0.3 mg l−1) were achieved for six replicates.Application of the developed method to the determination of chromium species in spiked river and tap water and wastewater samples, from a dye production plant, resulted in excellent agreements with accepted concentrations.  相似文献   

14.
A highly selective, and low cost extractive spectrofluorometric method has been developed for determination of trace concentrations of chromium (III & VI) in water samples using the fluorescent reagent tetraphenylphosphonium bromide (TPP+·Br). The method was based upon solvent extraction of the produced ion associate [TPP+·CrO3Cl] of TPP+·Br and halochromate in aqueous HCl and measuring the fluorescence quenching of TPP+·Br in chloroform at λex/em = 242/305 nm. The fluorescence intensity of TPP+Br decreased linearly on increasing the chromium (VI) concentration in the range of 1-114 μg L−1. The limits of detection (LOD) and quantification (LOQ) of chromium (VI) were 0.43 and 1.42 μg L−1, respectively. Chromium (III) species after oxidation to chromium (VI) with H2O2 in alkaline solution were also determined. Chemical speciation of chromium (III & VI) species at trace levels was achieved. The method was applied for analysis of chromium in certified reference material (IAEA Soil-7) and in tap- and wastewater samples and compared successfully (>95%) with the inductively coupled plasma-mass spectrometry (ICP-MS) results.  相似文献   

15.
Amberlite XAD-4 resin has been functionalized with succinic acid by coupling it with dibromosuccinic acid after acetylation. The resulting resin has been characterized by FT-IR, elemental analysis and TGA and has been used for preconcentrative separation of uranium(VI) from host of other inorganic species prior to its determination by spectrophotometry. The optimum pH value for quantitative sorption of uranium(VI) in both batch and column modes is 4.5-8.0 and desorption can be achieved by using 5.0 ml of 1.0 mol l−1 HCl. The sorption capacity of functionalized resin is 12.3 mg g−1. Calibration graphs were rectilinear over the uranium(VI) concentrations in the range 5-200 μg l−1. Five replicate determinations of 50 μg of uranium(VI) present in 1000 ml of solution gave a mean absorbance of 0.10 with a relative standard deviation of 2.56%. The detection limit corresponding to three times the standard deviation of the blank was found to be 2 μg l−1. Various cationic and anionic species at 200-fold amounts do not interfere during the preconcentration of 5.0 μg of uranium(VI) present in 1000 ml (batch) or 100 ml (column) of sample solution. Further, adsorption kinetic and isotherm studies were also carried out by a batch method to understand the nature of sorption of uranium(VI) with the succinic acid functionalized resin. The accuracy of the developed solid phase extractive preconcentration method in conjunction with Arsenazo III procedure was tested by analyzing marine sediment (MESS-3) and soil (IAEA soil-7) reference material. Further, the above procedure has been successfully employed for the analysis of soil and sediment samples.  相似文献   

16.
Ma HL  Tanner PA 《Talanta》2008,77(1):189-194
An isotope dilution method has been developed for the speciation analysis of chromium in natural waters which accounts for species interconversions without the requirement of a separation instrument connected to the mass spectrometer. The method involves (i) in-situ spiking of the sample with isotopically enriched chromium species; (ii) separation of chromium species by precipitation with iron hydroxide; (iii) careful measurement of isotope ratios using an inductively coupled plasma mass spectrometer (ICP-MS) with a dynamic reaction cell (DRC) to remove isobaric polyatomic interferences. The method detection limits are 0.4 μg L−1 for Cr(III) and 0.04 μg L−1 for Cr(VI). The method is demonstrated for the speciation of Cr(III) and Cr(VI) in local nullah and synthetically spiked water samples. The percentage of conversion from Cr(III) to Cr(VI) increased from 5.9% to 9.3% with increase of the concentration of Cr(VI) and Cr(III) from 1 to 100 μg L−1, while the reverse conversion from Cr(VI) to Cr(III) was observed within a range between 0.9% and 1.9%. The equilibrium constant for the conversion was found to be independent of the initial concentrations of Cr(III) and Cr(VI) and in the range of 1.0 (at pH 3) to 1.8 (at pH 10). The precision of the method is better than that of the DPC method for Cr(VI) analysis, with the added bonuses of freedom from interferences and simultaneous Cr(III) determination.  相似文献   

17.
A modified SBA-15 mesoporous silica material NH2-SBA-15 was synthesized successfully by grafting γ-aminopropyl-triethoxysilane. The material was characterized using transmission electron microscopy (TEM) and Fourier transform infrared/Raman (FT-IR/Raman) spectroscopy, and used for the first time in a flow injection on-line solid phase extraction (SPE) coupled with flame atomic absorption spectrometry (FAAS) to detect trace Cr (VI). Effective sorption of Cr (VI) was achieved at pH 2.0 with no interference from Cr (III) and other ions and 0.5 mol L−1 NH3·H2O solution was found optimal for the complete elution of Cr (VI). An enrichment factor of 44 and was achieved under optimized experimental conditions at a sample loading of 2.0 mL min−1 sample loading (300 s) and an elution flow rate of 2.0 mL min−1 (24 s). The precision of the 11 replicate Cr (VI) measurements was 2.1% at the 100 μg L−1 level with a detection limit of 0.2 μg L−1 (3 s, n = 10) using the FAAS. The developed method was successfully applied to trace chromium determination in waste water. The accuracy was validated using a certified reference material of riverine water (GBW08607).  相似文献   

18.
A procedure for the determination of trace level of copper(II) and cadmium(II) by FAAS using an on-line preconcentration system has been proposed. In this system, copper and cadmium ions were adsorbed onto a minicolumn packed with silica gel modified with niobium(V) oxide (Nb2O5-SiO2), followed by nitric acid elution in reverse mode and determination on-line by flame atomic absorption spectrometry (AAS) without interference of the matrix. Chemical and flow variables as well as concomitant ions were studied in the developed procedure. The enrichment factor for copper(II) and cadmium(II) was 34.2 and 33.0, respectively, using a preconcentration time of 2 min. The limit of detection for copper(II) and cadmium(II) was 0.4, and 0.1 μg l−1, respectively. The precision of the method, evaluated as the relative standard deviation in solutions containing 15 μg l−1 of copper and 10 μg l−1 of cadmium, by analyzing a series of seven replicates, was 1.8 and 1.6%, respectively. The accuracy was assessed through recovery experiments of certified material and water samples.  相似文献   

19.
Tang B  Yue T  Wu J  Dong Y  Ding Y  Wang H 《Talanta》2004,64(4):955-960
A novel fluorescent reagent o-vanillin-8-aminoquinoline(OVAQ) was synthesized, and its infrared spectrum, elemental analysis and acid-base dissociation constants were obtained. The fluorescent reaction of this reagent with Cr(III) was studied. In acetonitrile-water (1:1, (v/v)) medium of pH 6.00, Cr(III) could react with fluorescent reagent OVAQ (λex/em=280/314 nm) to form a 1:1 non-fluorescent complex. The linear range of the spectrofluorimetric method proposed was from 8.2 to 130 μg l−1, and the detection limit was 2.5 μg l−1. The interferences of 25 foreign ions were also studied. This method could be easily performed and was successfully applied to the determination of Cr(III) and total chromium in domestic and industrial waste water samples.  相似文献   

20.
Ibrahim S.I. Adam 《Talanta》2009,77(3):1160-1164
A newly simple flow injection wetting-film extraction system coupled to flame atomic absorption spectrometry (FAAS) has been developed for trace amount of cadmium determination. The sample was mixed on-line with sodium diethyl dithiocarbamate and the produced non-charged Cd(II)-diethyl dithiocarbamate (DDTC) chelate complex was extracted on the thin film of diisobutyl ketone (DIBK) on the inner wall of the PTFE extraction coil. The wetting-film with the extracted analyte was then eluted by a segment of the cover solvent, and transported directly to the FAAS for evaluation. All the important chemical and flow parameters were optimized. Under the optimized conditions an enhancement factor of 35, a sample frequency of 22 h−1 and a detection limit of cL = 0.7 μg l−1 Cd(II) were obtained for 60 s preconcentration time. The calibration curve was linear over the concentration range 1.5-45.0 μg l−1 Cd(II) and the relative standard deviation, R.S.D. (n = 10) was 3.9%, at 10.0 μg l−1 concentration level. The developed method was successfully applied to cadmium determination in a variety of environmental water samples as well as waste-water sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号