首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
A quantitative liquid chromatographic-electrospray ionization mass spectrometric method for the determination of dexamethasone in sheep plasma has been developed and validated. The samples were extracted using solid-phase extraction cartridges with mixed reversed-phase materials (oasis-HLB). The chromatographic separation was performed on a reversed-phase XTerrra MS C18 column ( mm; 5 μm) using a mobile phase consisting of 65% methanol in water containing 0.1% (v/v) formic acid, pumped at a flow rate of 0.30 ml min−1. The analyte was detected after positive electrospray ionization using selected ion monitoring (SIM) mode. The probe heater temperature was set at 260 °C, the capillary voltage was set at 3.5 kV and the source block voltage (AQAmax) was set at 30 V. The method was fully validated. Calibration graphs were linear (r better than 0.998, n=11), in concentration ranges 6-1000 ng ml−1 for dexamethasone. The intra- and inter-day RSD values were less than 24.1% (n=6). The limits of detection and quantitation for dexamethasone were found to be 1 and 6 ng ml−1, respectively. The efficiency of the solid phase extraction procedure was found to be 92.4% for dexamethasone. The method was further applied to a pilot kinetic study in order to assess the main pharmacokinetic parameters of dexamethasone in sheep.  相似文献   

2.
Different collision gases (H2, He and premixed 7% H2 in He) used in the hexapole collision cell of an inductively coupled plasma-mass spectrometer (ICP-MS) were compared, and the gas-flow rates were optimized for the determination of arsenic (), iron () and selenium (). The study showed that the argon-based interferences at mass-to-charge ratios (m/z) of 56, 75 and 80 can be overcome by the optimized gas flows (7.5 ml min−1 premixed 7% H2 in He and 2 ml min−1 H2) in the hexapole collision cell. Detection limits of 15.5 ng l−1 for iron () and 29 ng l−1 for selenium () in 2% (v/v) HNO3 were obtained under optimized collision cell conditions. The detection limit for arsenic () obtained in difficult hydrochloride acid matrix (5% HCl (v/v)) was 153 ng l−1. The accuracy of the optimized method was confirmed by analyzing two moss reference materials. The results obtained by ICP-MS for arsenic, selenium and iron from both moss reference samples were, in most cases, in good agreement with the certified values.  相似文献   

3.
Jeannotte R  Hamel C  Jabaji S  Whalen JK 《Talanta》2008,77(1):195-199
The extraction and transesterification of soil lipids into fatty acid methyl esters (FAMEs) is a useful technique for studying soil microbial communities. The objective of this study was to find the best solvent mixture to extract soil lipids with a pressurized solvent extractor system. Four solvent mixtures were selected for testing: chloroform:methanol:phosphate buffer (1:2:0.8, v/v/v), chloroform:methanol (1:2, v/v), hexane:2-propanol (3:2, v/v) and acetone. Soils were from agricultural fields and had a wide range of clay, organic matter and microbial biomass contents. Total lipid fatty acid methyl esters (TL-FAMEs) were the extractable soil lipids identified and quantified with gas chromatography and flame ionization detection. Concentrations of TL-FAMEs ranged from 57.3 to 542.2 n mole g−1 soil (dry weight basis). The highest concentrations of TL-FAMEs were extracted with chloroform:methanol:buffer or chloroform:methanol mixtures than with the hexane:2-propanol or acetone solvents. The concentrations of TL-FAMEs in chemical groups, including saturated, branched, mono- and poly-unsaturated and hydroxy fatty acids were assessed, and biological groups (soil bacteria, mycorrhizal fungi, saprophytic fungi and higher plants) was distinguished. The extraction efficiency for the chemical and biological groups followed the general trend of: chloroform:methanol:buffer ≥ chloroform:methanol > hexane:2-propanol = acetone. Discriminant analysis revealed differences in TL-FAME profiles based on the solvent mixture and the soil type. Although solvent mixtures containing chloroform and methanol were the most efficient for extracting lipids from the agricultural soils in this study, soil properties and the lipid groups to be studied should be considered when selecting a solvent mixture. According to our knowledge, this is the first report of soil lipid extraction with hexane:2-propanol or acetone in a pressurized solvent extraction system.  相似文献   

4.
A fast, sensitive and selective procedure employing a combination of microwave-assisted extraction (MAE) and solid phase extraction (SPE) was applied prior to liquid chromatographic identification and quantification of phenolic compounds in plant materials. MAE has been tested and optimized for the isolation of phenolic acids (gallic, protocatechuic, p-hydroxybenzoic, chlorogenic, vanilic, caffeic, syringic, p-coumaric, ferulic, sinapic, benzoic, m-coumaric, o-coumaric, rosmarinic, cinnamic acids) and 3,4-dihydroxybenzaldehyde, syringaldehyde, p-hydroxybenzaldehyde, and vanillin in various plants. The effects of experimental conditions on MAE efficiency, such as solvent composition, temperature, extraction time, have been studied. The extraction efficiencies were compared with those obtained by computer-controlled, two-step Soxhlet-like extractions. Plant extracts were purified and phenolic compounds were pre-concentrated using SPE on polymeric RP-105 SPE sorbent prior to HPLC analysis. Chromatographic separation was carried out on a Hypersil BDS C18 column using a mobile phase consisted of 0.3% (v/v) acetic acid in water (solvent A) and methanol (solvent B) at flow rate 0.6 ml min−1 and column temperature 30 °C with gradient elution.  相似文献   

5.
A new liquid chromatographic tandem mass spectrometric method for the determination of mirtazapine and demethylmirtazapine in human plasma has been developed and fully validated. The article describes in detail the bioanalytical procedure and summarizes the validation results obtained. The samples were extracted using liquid-liquid extraction with a mixture of 1-chlorobutane/isopropanol/ethyl acetate (88:2:10, (v/v/v)). The chromatographic separation was performed on a reversed-phase XTerrra MS C8 column ( i.d.; 3.5 μm particle size) using a mobile phase consisting of 0.010 M ammonium formate (pH 7.8) and acetonitrile (35:65, (v/v)), pumped at a flow rate of 0.80 ml min−1. The analytes were detected using a Finnigan LCQ advantage ion-trap mass spectrometer with positive electrospray ionization in selected reaction monitoring (SRM) mode. Tandem mass spectrometric detection enabled the quantitation of both compounds down to 0.10 ng ml−1. Calibration graphs were linear (r better than 0.990, n=11), in concentration ranges 0.10 to 200 ng ml−1 for mirtazapine demethylmirtazapine. The intra- and inter-day R.S.D. values were less than 14.8 and 16.6% for mirtazapine and demethylmirtazapine, respectively. The method was successfully applied to a kinetic study in order to assess the main pharmacokinetic parameters of mirtazapine and demethylmirtazapine.  相似文献   

6.
Shi Z  He J  Chang W 《Talanta》2004,64(2):401-407
The feasibility of employing non-ionic surfactant oligoethylene glycol monoalkyl ether (Genapol X-080) as an alternative and effective solvent for the extraction of tanshinones from Salvia miltiorrhiza bunge was studied for the first time. Various experimental conditions were investigated to optimize the extraction. Under optimum conditions, i.e. 10% Genapol X-080 (w/v), liquid/solid ratio of 20:1 (ml g−1), ultrasonic-assisted extraction for 45 min, the extraction recovery of the tanshinones reached the highest value. When compared with commonly used solvents, 10% Genapol X-080 yielded almost the same extraction efficiency as methanol and dichloromethane-methanol (1:4). For the pre-concentration of tanshinones by cloud-point extraction (CPE), sodium chloride was added to the solution to facilitate the phase separation and increase the pre-concentration factor by reducing the volume of the surfactant-rich phase.  相似文献   

7.
The luminescent properties of terbium complexes with furosemide (FR), flufenamic (FF) acid, tolfenamic (TF) acid and mefenamic (MF) acid have been investigated in aqueous solutions. For all four compounds, complexation occurs when the carboxylic acid of the aminobenzoic group is dissociated and is greatly favoured in the presence of trioctylphosphine oxide as co-ligand and Triton X-100 as surfactant. Under optimum conditions, luminescence of the lanthanide ion is efficiently sensitised and the lifetime of the resonance level of terbium in the complex is ranging between 1 and 1.9 ms, against 0.4 ms for the aqua ion. The sensitivity of the method for the determination of anthranilic acid derivatives is improved by one to two orders of magnitude with respect to that achieved using native fluorescence or terbium-sensitised luminescence in methanol. The limits of detection are 2×10−10, 5×10−10 and 2×10−9 mol l−1 for flufenamic acid, furosemide and tolfenamic acid, and mefenamic acid, respectively, with within-run RSD values of less than 1%. The method has been applied to the determination of flufenamic acid in spiked calf sera with and without sample pretreatment. Depending on the method and the analyte concentration, the recovery was ranging between 83 and 113% and the lowest concentration attainable in serum samples was close to 1×10−7 mol l−1.  相似文献   

8.
A new isocratic stability indicating HPLC method for determination of tizanidine in drug substance and formulated products is described. Chromatographic separation of tizanidine from the related substances and degraded products was achieved with a Hypersil CN column ( mm, 5 μm) using a mobile phase comprising a mixture of an ion-pairing solution of heptanesulphonic acid sodium salt (HAS), methanol and acetonitrile (50:57:18 (v/v)) within 10 min. The flow-rate was 1.0 ml/min and detection was made at 227 nm. The method has good selectivity towards tizanidine, related substances and degraded products. Limits of quantitation for tizanidine and its synthetic intermediates were determined, ranging from 0.051 to 0.54 μg/ml. The linearity range was found to be 2-20 μg/ml (r=0.9998, n=5). Mean recovery for tizanidine from the tablets was from 99.5 to 99.8%. Precision of the method was 1.0% (n=9). The method can be used for routine analysis and the quality control of tizanidine drug substance and its formulated products.  相似文献   

9.
A simple, cost effective, and yet sensitive sample preparation technique was investigated for determining Polycyclic Aromatic Hydrocarbons (PAHs) in solid samples. The method comprises ultrasonic extraction, Stir Bar Sorptive Extraction (SBSE), and thermal desorption–gas chromatography–mass spectrometry to increase analytical capacity in laboratories. This method required no clean-up, satisfied PAHs recovery, and significantly advances cost performance over conventional extraction methods, such as Soxhlet and Microwave Assisted Extraction (MAE). This study evaluated three operational parameters for ultrasonic extraction: solvent composition, extraction time, and sample load. A standard material, SRM 1649 a (urban dust), was used as the solid sample matrix, and 12 priority PAHs on the US Environmental Protection Agency (US EPA) list were analyzed. Combination of non-polar and polar solvents ameliorated extraction efficiency. Acetone/hexane mixtures of 2:3 and 1:1 (v/v) gave the most satisfactory results: recoveries ranged from 63.3% to 122%. Single composition solvents (methanol, hexane, and dichloromethane) showed fewer recoveries. Comparing 20 min with 60 min sonication, longer sonication diminished extraction efficiencies in general. Furthermore, sample load became a critical factor in certain solvent systems, particularly MeOH. MAE was also compared to the ultrasonic extraction, and results determined that the 20-min ultrasonic extraction using acetone/hexane (2:3, v/v) was as potent as MAE. The SBSE method using 20 mL of 30% alcohol-fortified solution rendered a limit of detection ranging from 1.7 to 32 ng L−1 and a limit of quantitation ranging from 5.8 to 110 ng L−1 for the 16 US EPA PAHs.  相似文献   

10.
In the present paper a new extraction technique based on the combination of solid-phase/supercritical-fluid extraction (SPE/SFE) with subsequent reversed-phase HPLC is described. The SPE/SFE extractor was originally constructed from SPE-cartridge incorporated into the SFE extraction cell. Selected groups of benzoic acid derivatives (p-hydroxybenzoic, protocatechuic, gallic, vanillic and syringic acid), hydroxybenzaldehydes (4-hydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde) and cinnamic acid derivatives (o-coumaric, p-coumaric, caffeic, ferulic, sinapic and chlorogenic acid) were extracted. Cyclic addition of binary extraction solvent system based on methanol:water (1:1, v/v) and methanol/ammonia aqueous solution was used for extraction at 40 MPa and 80 °C. The p-hydroxybenzoic, protocatechuic, vanillic, syringic, caffeic and chlorogenic acid; 4-hydroxybenzaldehyde and 3,4-dihydroxybenzaldehyde were identified by HPLC-electrospray mass spectrometry in SPE/SFE extracts of acid hydrolyzates of microalga (Spongiochloris spongiosa) and cyanobacterial strains (Spirulina platensis, Anabaena doliolum, Nostoc sp., and Cylindrospermum sp.). For the identification and quantification of the compounds the quasi-molecular ions [M−H] and specific fragments were analysed by quadrupole mass spectrometry analyzer. Our analysis showed that the microalgae and cyanobacteria usually contained phenolic acids or aldehydes at μg levels per gram of lyophilized sample. The proposed SPE/SFE extraction method would be useful for the analysis of different plant species containing trace amount of polar fraction of phenols.  相似文献   

11.
《Analytica chimica acta》2004,512(2):287-295
The potential of non-aqueous capillary electrophoresis (NACE) was investigated for the simultaneous separation of paroxetine, tamoxifen, and their main metabolites. Baseline separation of the studied solutes was obtained on a  μm capillary using a non-aqueous buffer composed of 18 mM ammonium acetate and 1.1% acetic acid in 80:20 (v/v) methanol-acetonitrile, with a temperature and voltage of 22 °C and 15 kV, respectively. Clomipramine was used as internal standard. Aspects such as stability of the solutions, linearity, accuracy, precision and ruggedness were examined in order to validate the proposed method. Detection limits obtained for all the studied compounds ranged between 3.0 and 7.1 μg l−1. The developed method is sensitive and robust and was used to determine paroxetine, tamoxifen, and their metabolites at clinically relevant levels in human urine. Before NACE determination, the samples were purified and enriched by means of an extraction-pre-concentration step with a pre-conditioned C18 cartridge. Determination of these analytes in the urine of four females urines was demonstrated.  相似文献   

12.
The activity coefficients at infinite dilution, (where 1 refers to the solute and 3 to the solvent), for both polar and non-polar solutes (alkanes, alk-1-enes, alk-1-ynes, cycloalkanes, benzene, carbon tetrachloride, and methanol) in the ionic liquid 1-hexyl-3-methyl-imidazolium bis(trifluoromethylsulfonyl)-imide [HMIM][Tf2N] at three temperatures T = (298.15, 313.15, and 333.15) K have been determined by gas-liquid chromatography. The interaction at the gas-liquid interface between the solutes and the solvent was examined by varying solvent liquid loading on the column. Corrected retention values, taking carrier gas and solute imperfections into account, were determined and used to calculate the activity coefficients at infinite dilution. The results have been used to predict the solvent potential for the hexane/benzene separation from calculated selectivity values. The results were compared to for similar systems found in the literature in an attempt to understand the effect of the nature of the cation and anion has on solute-solvent interactions.The partial molar excess enthalpies at infinite dilution values were calculated from the experimental values obtained over the temperature range.  相似文献   

13.
Hetero dimer between tetrakis(m-ammonium)cavitand and tetrakis(dibenzo-25-crown-8)cavitand 5 was formed in CDCl3 at room temperature. The effects of solvent polarity and temperature on the stability of were studied and the thermodynamic parameters for the formation of are , ΔH0 = −67.4 kcal mol−1 and ΔS0 = −201.6 cal mol−1 K−1.  相似文献   

14.
The product from reaction of lanthanum chloride seven-hydrate with salicylic acid and 8-hydroxyquinoline, La(C7H5O3)2·(C9H6NO), was characterized by IR, elemental analysis, molar conductance, and thermogravimetric analysis. The standard molar enthalpies of solution of [LaCl3·7H2O (s)], [2C7H6O3 (s)], [C9H7NO (s)] and [La(C7H5O3)2·(C9H6NO) (s)] in a mixed solvent of absolute ethyl alcohol, dimethyl formamide (DMF) and perchloric acid were determined by calorimetry to be [LaCl3·7H2O (s), 298.15 K] = −96.45 ± 0.18 kJ mol−1, [2C7H6O3 (s), 298.15 K] = 14.99 ± 0.17 kJ mol−1, [C9H7NO (s), 298.15 K] = −3.86 ± 0.06 kJ mol−1 and [La(C7H5O3)2·(C9H6NO) (s), 298.15 K] = −117.78 ± 0.11 kJ mol−1. The enthalpy change of the reaction
(1)  相似文献   

15.
Enthalpies of solution of TiCl4(l) in aqueous perchloric acid have been measured in an isothermal calorimeter at T = 298.15 K at ionic strengths of (1.964, 3.002, and 4.062) mol · kg−1. These results were extrapolated to zero ionic strength using an extended Debye-Hückel equation, to yield the standard enthalpy of solution ; from which the standard partial molar enthalpy of formation of the titanyl ion was derived: .  相似文献   

16.
董娟娥  马希汉 《色谱》2007,25(2):217-220
建立了利用反相高效液相色谱法(RP-HPLC)同时测定杜仲雄花及其产品中京尼平苷酸和绿原酸的方法。所用的色谱柱为Shim-pack VP-ODS(150 mm×4.6 mm,5 μm),流动相组成为甲醇-水-乙酸(体积比为24∶75∶1),检测波长为240 nm。在该色谱条件下,京尼平苷酸的含量在0.025~0.400 g/L、绿原酸的含量在0.075~1.200 g/L范围内线性关系良好,相关系数分别为0.9997和0.9999;加标回收率分别为100.2%和100.5%。该法适用于杜仲雄花及其产品中这2种成分的含量分析。  相似文献   

17.
The reactions of OH, H and eaq with 2,4,5-trichlorophenoxyacetic acid (2,4,5-T) and 4-chloro-2-methylphenoxyacetic acid (MCPA) were studied by pulse radiolysis. The site of OH-radicals addition to the aromatic ring of 2,4,5-T was found to be—C1: ∼18%, C2/C4/C5: total ∼28% and C3/C6: total ∼41%. The overall rate constants with OH-radicals were k(OH+2,4,5-T)=6.4 (±0.5)×109 mol dm−3 s−1 and k(OH+MCPA)=8.5 (±0.8)×109 mol dm−3 s−1. The radiation induced decomposition of the pesticides, chloride- and product formation (phenolic compounds, aliphatic acids) was studied by gamma radiolysis as a function of dose. A mechanism for acetate formation is discussed. The presence of oxygen during irradiation affected the decomposition rate only indiscernibly, however, chloride elimination, ring fragmentation (formation of aliphatic acids), TOC- and toxicity reduction were strongly enhanced. For complete removal of 500 μmol dm−3 herbicides a dose of ∼4 kGy was required. Using air saturation during irradiation a reduction of 37-40% of the TOC was observable at 5 kGy, detoxification (luminescence inhibition <20%) was achieved with 10 kGy.  相似文献   

18.
The compounds [MBr2(an)2] (where M is Mn(II), Fe(II), Co(II), Ni(II), Cu(II) or Zn(II); an = aniline) were synthesized and characterized by melting points, elemental analysis, thermal studies, and electronic and IR spectroscopy. The enthalpies of dissolution of the adducts, metal(II) bromides and aniline in methanol, aqueous 1.2 M HCl or 25% (v/v) aqueous 1.2 M HCl in methanol were measured. The following thermochemical parameters for the adducts have been determined by thermochemical cycles: the standard enthalpies for the Lewis acid/base reactions (ΔrH°), the standard enthalpies of formation (ΔfH°), the standard enthalpies of decomposition (ΔDH°), the lattice standard enthalpies (ΔMH°) and the standard enthalpies of the Lewis acid/base reactions in the gaseous phase (ΔrH°(g)). The mean bond dissociation enthalpies of the M(II)-nitrogen bonds () and the enthalpies of formation of the adducts from the ions in the gaseous phase: M2+(g) + Br(g) + an(g) → [MBr2(an)2](g), (ΔfiH°) have been estimated.  相似文献   

19.
Inductively coupled plasma mass spectrometry (ICP-MS) with a time-of-flight (TOF) analyser was used for the determination of chromium, cadmium and lead in six food-packaging materials (paper and paper board). The samples (0.20-0.25 g) were digested in concentrated nitric acid in a high pressure microwave oven at 180 °C within 15 min. Two different plasma conditions were applied: cool plasma conditions (0.76 kW; 0.85, 0.89 and 15.5 l min−1 nebuliser, auxiliary and plasma gas flow rate, respectively) for the determination of chromium and normal plasma conditions (1.21 kW; 0.66, 0.68 and 13.6 l min−1 nebuliser, auxiliary and plasma gas flow rate, respectively) for the determination of cadmium and lead. External calibration was used in combination with rhodium (40 ng g−1) as an internal standard. The detection limits (DL = 3S.D./sensitivity) under the conditions used corresponded to 0.01 ng g−1 (), 0.06 ng g−1 (), 0.07 ng g−1 (), 0.03 ng g−1 () and 0.02 ng g−1 ( and ). The precision (R.S.D.) for six replicate determinations (10 s integration time) of 1 and 10 ng g−1 of each analyte varied from 0.72% () to 4.43% (). The contents of chromium, cadmium and lead in the examined materials were evaluated using the signals of , and . They were in the range: 0.25-0.50 μg g−1 for Cr, not detected (nd) to 0.12 μg g−1 for Cd and 0.28-0.35 μg g−1 for Pb in paper and 0.50-0.64 μg g−1 for Cr, nd to 0.09 μg g−1 for Cd and 0.67-0.99 μg g−1 for Pb in paper board.  相似文献   

20.
A new method for the analysis of phenoxy acid herbicide residues in rice, based on the use of liquid extraction/partition and dispersive solid phase extraction (dispersive-SPE) followed by ultra-performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS), is reported. 5% (v/v) formic acid in acetonitrile as the extraction solvent and inclusion of citrate buffer helped partitioning of all the analytes into the acetonitrile phase. The extract was then cleaned up by dispersive-SPE using C18 and alumina neutral as selective sorbents. Further optimization of sample preparation and determination allowed recoveries of between 45 and 104% for all 13 phenoxy acid herbicides with RSD values lower than 13.3% at 5.0 μg kg−1 concentration level. Limit of detections (LODs) of 0.5 μg kg−1 or below were attained for all 13 phenoxy acids. Quantitative analysis was done in the multiple-reaction monitoring (MRM) mode using two combinations of selected precursor ion and product ion transition for each compound. This developed method produced relatively higher recoveries of the acid herbicides with a smaller range of variation and less susceptibility to matrix effects, than the original QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号