首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A highly sensitive, fast and stable conductometric enzyme biosensor for determination of nitrate in water is reported for the first time. The biosensor electrodes were modified by methyl viologen mediator mixed with nitrate reductase (NR) from Aspergillus niger by cross-linking with glutaraldehyde in the presence of bovine serum albumin and Nafion® cation-exchange polymer. The process parameters for the fabrication of the enzyme electrode and various experimental variables such as pH, the enzyme loading and time of immobilization in glutaralaldehyde vapor were investigated with regard to their influence on sensitivity, limit of detection, dynamic range and operational and storage stability. The biosensor can reach 95% of steady-state conductance value in about 15 s. Linear calibration in the range of 0.02 and 0.25 mM with detection limits of 0.005 mM nitrate was obtained with a signal-to-noise ratio of 3. When stored in 5 mM phosphate buffer (pH 7.5) at 4 °C, the sensor showed good stability over 2 weeks.  相似文献   

2.
A.K. Upadhyay 《Talanta》2009,79(1):38-9495
A novel amperometric biosensor for the analytical determination of hydrogen peroxide was developed. The fabrication of the biosensor was based on the coimmobilization of horseradish peroxidase (HRP), methylene green (MG) and multiwalled carbon nanotubes within ormosils; 3-aminopropyltrimethoxysilane (APTMOS), 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane (ETMOS) and phenyltrimethoxysilane (PHTMOS). APTMOS determined the hydrophilicity/hydrophobicity of the ormosils and PHTMOS and ETMOS increased the physical and mechanical strength of the ormosil matrix. The ormosil modified electrodes were characterized with SEM, UV-vis spectroscopy and electrochemical methods. Cyclic voltammetry and amperometric measurements demonstrated the MG coimmobilized with HRP in this way, displayed good stability and could efficiently shuttle electrons between immobilized enzyme and electrode, and MWCNTs facilitated the electrocatalytic reduction of H2O2 at reduced over potential. The Micheaelis constant of the immobilized HRP was 1.8 mM, indicating a high affinity of the HRP to H2O2 without loss of enzymatic activity in ormosil matrix. The prepared biosensor had a fast response of H2O2, less than 10 s, and excellent linear range of concentration from 5 × 10−7 to 2 × 10−5 M with the detection limit of 0.5 μM (S/N = 3) under the optimum conditions. At the same time, the influence of solution pH, effect of enzyme amount, steady-state applied potential and temperature on the biosensor were investigated. The enzyme electrode retained about 90% of its initial activity after 30 days of storage in a dry state at 4 °C. The preparation of the developed biosensor was convenient and showed high sensitivity with good stability.  相似文献   

3.
Two amperometric enzyme biosensor systems, based on glycerol dehydrogenase/diaphorase (GDH/DP) and glycerol kinase/glycerol-3-phosphate oxidase/peroxidase (GK/GPOx/HRP), were developed and used for estimation of glycerol content in a complex biological fluids. Enzymes were immobilized on interchangeable membranes by PCS-prepolymer technique. Buffers containing ferricyanide/NAD+ or ferrocyanide/ATP were used for measurements with GDH/DP and GK/GPOx/HRP biosensor, respectively. FIA assay of glycerol biosensor was characterized by a linear range of 0.01-1 or 0.01-1.5 mM glycerol, sensitivity of 6.02 or 1.42 mA/M cm2 and with signal loss of 40% after 90 h or 30% after 16 h during continuous operation at a sample throughput of 10 injections/h for GDH/DP or GK/GPOx/HRP biosensors, respectively. Both biosensors were successfully used for off-line monitoring of glycerol during microbial transformation of glycerol to 1,3-propanediol using an automatized flow-through system. The results were consistent with those obtained with HPLC. The stability of described biosensor systems was sufficient for monitoring and control of fermentation process within 24 h. The storage stability of enzyme membranes was several months.  相似文献   

4.
This paper describes the development and optimization of an amperometric biosensor for monitoring ethanol in beverages. The biosensor is constructed by cross-linking a quinoprotein alcohol dehydrogenase (QH-ADH) to an Os-complex-modified poly(vinylimidazole) redox polymer using poly(ethylene glycol) diglycidyl ether. The optimum biosensor configuration was evaluated by changing the ratio between enzyme, redox polymer, and cross-linker using conventional graphite rods as basis electrodes. The optimized sensor showed a sensitivity of 0.336±0.025 A M−1 cm2 for ethanol and a detection limit (calculated as three times the signal-to-noise ratio) of 1 μM.This biosensor configuration was further evaluated in a conventional flow-injection system and the applicability for the determination of ethanol in diverse wine samples could be successfully demonstrated. Adaptation of this sensor configuration to screen-printed (SP) electrodes allowed their integration into an automated sequential-injection analyzer and the successful on-line monitoring of ethanol during wine fermentation processes.  相似文献   

5.
Shi M  Xu J  Zhang S  Liu B  Kong J 《Talanta》2006,68(4):1089-1095
A mediator-free amperometric biosensor for screening organophosphorus pesticides (OPs) in flow-injection analysis (FIA) system based on anticholinesterase activity of OPs to immobilized acetylcholinesterase enzyme (AChE) has been developed. The enzyme biosensor is prepared by entrapping AChE in Al2O3 sol-gel matrix screen-printed on an integrated 3-electrode plastic chip. This strategy is found not only increase the stability of the embedded AChE, but also effectively catalyze the oxidative reaction of thiocholine, making the Al2O3-AChE biosensor detects the substrate at 0.25 V (versus Ag/AgCl), hundreds mini-volt lower than other reported mediator-free ones. The Al2O3-AChE biosensor is thus coupled to FIA system to build up a simple and low-cost FIA-EC system for screening OPs in real samples. A wide linear inhibition response for dichlorvos, typical OP, is observed in the range of 0.1-80 μM, corresponding to 7.91-84.94% inhibition for AChE. The detection limit for dichlorvos is achieved at 10 nM in the simulated seawater for 15 min inhibiting time, which allows the biosensor quantitatively detects the ecotoxicological effect of the real samples from the seaports in eastern China, where the OPs pollution is confirmed by GC-MS.  相似文献   

6.
A long-life capillary enzyme bioreactor was developed that determines glucose concentrations with high sensitivity and better stability than previous systems. The bioreactor was constructed by immobilizing glucose oxidase (GOx) onto the inner surface of a 0.53 mm i.d. fused-silica capillary that was part of a continuous-flow system. In the presence of oxygen, GOx converts glucose to gluconic acid and hydrogen peroxide (H2O2). Hydrogen peroxide detection was accomplished using an amperometric electrochemical detector. The integration of this capillary reactor into a flow-injection (FIA) system offered a larger surface-to-volume ratio, reduced band-broadening effects, and reduced reagent consumption compared to packed column in FIA or other settings. To obtain operational (at ambient temp) and storage (at 4 °C) stability for 20 weeks, the glucose biosensing system was prepared using an optimal GOx concentration (200 mg/mL). This exhibited an FIA peak response of 7 min and a detection limit of 10 μM (S/N = 3) with excellent reproducibility (coefficient of variation, CV < 0.75%). It also had a linear working range from 101 to 104 μM. The enzyme activity in this proposed capillary enzyme reactor was well maintained for 20 weeks. Furthermore, 20 serum samples were analyzed using this system, and these correlated favorably (correlation coefficient, r2 = 0.935) with results for the same samples obtained using a routine clinical method. The resulting biosensing system exhibited characteristics that make it suitable for in vivo application.  相似文献   

7.
Stabilisation of electrochemically deposited Prussian blue (PB) films on glassy carbon (GC) electrodes has been investigated and an enhancement in the stability of the PB films is reported if the electrodes are treated with tetrabutylammonium toluene-4-sulfonate (TTS) in the electrochemical activation step following the electrodeposition. A multi-enzyme PB based biosensor for sucrose detection was made in order to demonstrate that PB films can be coupled with an oxidase system. A tri-enzyme system, comprising glucose oxidase, mutarotase and invertase, was crosslinked with glutaraldehyde and bovine albumin serum on the PB modified glassy carbon electrode. The deposited PB operated as an electrocatalyst for electrochemical reduction of hydrogen peroxide, the final product of the enzyme reaction sequence. The electrochemical response was studied using flow injection analysis for the determination of sucrose, glucose and H2O2. The optimal concentrations of the immobilisation mixture was standardised as 8 U of glucose oxidase, 8 U of mutarotase, 16 U of invertase, 0.5% glutaraldehyde (0.025 μl) and 0.5% BSA (0.025 mg) in a final volume of 5 μl applied at the electrode surface (0.066 cm2). The biosensor exhibited a linear response for sucrose (4-800 μM), glucose (2-800 μM) and H2O2 (1-800 μM) and the detection limit was 4.5, 1.5 and 0.5 μM for sucrose, glucose and H2O2, respectively. The sample throughput was ca. 60 samples h−1. An increase in the operational and storage stability of the sucrose biosensor was also noted when the PB modified electrodes were conditioned in phosphate buffer containing 0.05 M TTS during the preparation of the PB films.  相似文献   

8.
During the reversible reaction between peroxidase (HRP) and peroxides, several peroxidase intermediate species, showing different molecular absorption spectra, are formed which can be used for their determination. On this basis, a reversible reagentless optical biosensor based on HRP for hydrogen peroxide and peracetic acid determinations has been developed. The biosensor (which can be used for at least 3 months and/or more than 200 measurements) is prepared by HRP entrapment in a polyacrylamide gel matrix. A mathematical model (in which optical, kinetic and transport aspects are considered) relating the measured absorbance with the analyte concentration is also presented. Both peroxides show similar responses in the sensor film. Under the recommended working conditions, the biosensor shows linear response ranges from 6 × 10−7 to 1.0 × 10−4 M using FIA mode, and from 2 × 10−7 to 1.5 × 10−5 M using continuous mode for both peroxides; the precision, expressed as R.S.D., is about 4%. This biosensor has been applied for peroxide determination in waste water samples previously treated with peroxides.  相似文献   

9.
Pentacyanoferrate-bound poly(1-vinylimidazole) (PVI[Fe(CN)5]) was selected as a mediator for amperometric creatinine determination based on the reductive H2O2 detection. Creatinine amidohydrolase (CNH), creatine amidohydrolase (CRH), sarcosine oxidase (SOD), peroxidase (POD), and PVI[Fe(CN)5] were crosslinked with poly(ethylene glycol) diglycidyl ether (PEGDGE) on a glassy carbon (GC) electrode for a creatinine biosensor fabrication. Reduction current was monitored at −0.1 V in the presence of creatinine and O2. It is revealed that PVI[Fe(CN)5] is suitable as a mediator for a bioelectrocatalytic reaction of POD, since PVI[Fe(CN)5] neither reacts with reactants nor works as an electron acceptor of SOD. The amounts of PVI[Fe(CN)5], PEGDGE, and enzymes were optimized toward creatinine detection. Nafion as a protecting film successfully prevented the enzyme layer from interferences. The detection limit and linear range in creatinine determination were 12 μM and 12–500 μM (R2 = 0.993), respectively, and the sensitivity was 11 mA cm−2 M−1, which is applicable for urine creatinine tests. The results of the creatinine determination for four urine samples measured with this proposed method were compared with Jaffe method, and a good correlation was obtained between the results.  相似文献   

10.
A novel enzyme reactor with co-immobilization of β-galactosidase and glucose oxidase in calcium alginate fiber (CAF) and amine modified nanosized mesoporous silica (AMNMS) was prepared which incorporate the adsorption and catalysis of AMNMS with the cage effect of the polymer to increase catalytic activity and stability of immobilized enzyme. The enzyme reactor was applied to prepare a chemiluminescence (CL) flow-through biosensor for determination of lactose combined with a novel luminol-diperiodatonickelate (DPN) CL system we reported. It shows that the CL flow-through biosensor possesses long lifetime, high stability, high catalytic activity and sensitivity. The relative CL intensity was linear with the lactose concentration in the range of 8 × 10−8-4 × 10−6 g mL−1 with the detection limit of 2.7 × 10−8 g mL−1 (3σ). It has been successfully applied to the determination of lactose in milk.  相似文献   

11.
Different techniques have been used (physical adsorption, physically entrapped sandwich and microencapsulation) for the immobilization of urease enzyme in tetramethylorthosilicate (TMOS) derived sol-gel matrix on the sensing surface of glass-pH-electrode. No significant leaching of enzyme occurs from the microencapsulated and physically entrapped enzyme sandwich films. Potentiometric techniques have been used for the estimation of urea concentration in each instance. Various parameters of biosensor performance have been studied which indicates that microencapsulation technique is a better method of enzyme immobilization in sol-gel films derived from TMOS. The advantage of microencapsulated biosensor over others include higher sensitivity (dpH/dp(C) = 2.4), lower detection limit of 52 μg mL−1, larger linear range (0.01-30 mM) of urea determination and reasonably long-term stability of about 25 days with 80% response signal.  相似文献   

12.
We constructed a biosensor by electrodeposition of gold nano-particles (AuNPs) on glassy carbon (GC) and subsequent formation of a 4-mercaptobenzoic acid self-assembled monolayer (SAM). The enzyme horseradish peroxidase (HRP) was then covalently immobilized onto the SAM. Two forms of HRP were employed: non-modified and chemically glycosylated with lactose. Circular dichroism (CD) spectra showed that chemical glycosylation did neither change the tertiary structure of HRP nor the heme environment. The highest sensitivity of the biosensor to hydroquinone was obtained for the biosensor with HRP-lactose (414 nA μM−1) compared to 378 nA μM−1 for the one employing non-modified HRP. The chemically glycosylated form of the enzyme catalyzed the reduction of hydroquinone more rapidly than the native form of the enzyme. The sensor employing lactose-modified HRP also had a lower limit of detection (74 μM) than the HRP biosensor (83 μM). However, most importantly, chemically glycosylation improved the long-term stability of the biosensor, which retained 60% of its activity over a four-month storage period compared to only 10% for HRP. These results highlight improvements by an innovative stabilization method when compared to previously reported enzyme-based biosensors.  相似文献   

13.
A screen-printed amperometric biosensor based on carbon ink double bulk-modified with MnO2 as a mediator and glucose oxidase as a biocomponent was investigated for its ability to serve as a detector for bonded glucose in different compounds, such as cellobiose, saccharose, (-)-4-nitrophenyl-β-d-glucopyranoside, as well as in beer samples by flow-injection analysis (FIA). The biosensor could be operated under physiological conditions (0.1 M phosphate buffer, pH 7.5) and exhibited good reproducibility and stability. Bonded glucose was released with glucosidase in solution, and the free glucose was detected with the modified screen-printed electrode (SPE). The release of glucose by the aid of glucosidase from cellobiose, saccharose and (-)-4-nitrophenyl-β-d-glucopyranoside in solution showed that stoichiometric quantities of free glucose could be monitored in all three cases.The linear range of the amperometric response of the biosensor in the FIA-mode flow rate 0.2 mL min−1, injection volume 0.25 mL, operation potential 0.48 V versus Ag/AgCl) extends from 11 to 13,900 μmol L−1 glucose in free form. The limit of detection (3σ) is 1 μmol L−1 glucose. A concentration of 100 μmol L−1 yields a relative standard deviation of approximately 7% with five injections. These values correspond to the same concentrations of bonded glucose supposed that it is liberated quantitatively (incubation for 2 h with glucosidase).Bonded glucose could be determined in beer samples using the same assay. The results corresponded very well with the reference procedure.  相似文献   

14.
Sohn OJ  Han KA  Rhee JI 《Talanta》2005,65(1):185-191
In this study, a flow injection analysis (FIA) system using a cartridge of immobilized isocitrate lyase (ICL) and isocitrate dehydrogenase (ICDH) was developed to monitor the concentrations of succinic acid in biotechnological processes. The ICL and ICDH immobilized on VA-Epoxy Biosynth E3-carrier had a good operational lifetime (up to 24 h) and storage stability (up to 30 days). The FIA system with the immobilized ICL/ICDH cartridge was characterized with respect to the factors affecting the activity of the immobilized enzymes, such as pH of carrier solution, temperature, sample matrix, etc. Optimal pH value of the immobilized enzymes was slightly shifted in the alkaline range, i.e. 9.0. Some components such as 10 g l−1 lactose, 3 g l−1 malate and 3 g l−1 oxaloacetate in sample solution had significant activating effects (more than 10%) on the response of the FIA system. But the activity of the immobilized ICL and ICDH was not largely influenced by some components like imidazole (1 mM), sodium azide (10 mM) and semicarbazide (2 g l−1) added to carrier buffer solution. The FIA system with an enzyme cartridge was applied to on-line monitor the concentrations of succinic acid in a continuously stirred reactor and a fermentation process of immobilized Escherichia coli, and showed good sensitivity and reliability of the FIA system developed in this work.  相似文献   

15.
Wu B  Zhang G  Shuang S  Choi MM 《Talanta》2004,64(2):546-553
A glucose biosensor using an enzyme-immobilized eggshell membrane and oxygen electrode for glucose determination has been fabricated. Glucose oxidase was covalently immobilized on an eggshell membrane with glutaraldehyde as a cross-linking agent. The glucose biosensor was fabricated by positioning the enzyme-immobilized eggshell membrane on the surface of a dissolved oxygen sensor. The detection scheme was based on the depletion of dissolved oxygen content upon exposure to glucose solution and the decrease in the oxygen level was monitored and related to the glucose concentration. The effect of glutaraldehyde concentration, pH, phosphate buffer concentration and temperature on the response of the glucose biosensor has been studied in detail. Common matrix interferents such as ethanol, d-fructose, citric acid, sodium benzoate, sucrose and l-ascorbic acid did not give significant interference. The resulting sensor exhibited a fast response (100 s), high sensitivity (8.3409 mg L−1 oxygen depletion/mmol L−1 glucose) and good storage stability (85.2% of its initial sensitivity after 4 months). The linear response is 1.0×10−5 to 1.3×10−3 mol L−1 glucose. The glucose content in real samples such as commercial glucose injection preparations and wines was determined, and the results were comparable to the values obtained from a commercial glucose assay kit based on a spectrophotometric method.  相似文献   

16.
Application of interdigitated array microelectrodes as electrochemical sensors for determination of antioxidant capacity is reported. Electrochemical measurements with interdigitated electrodes (IDE) were studied in both stationary solutions and the flow system. The method is based on biamperometric measurements using ABTS+|ABTS redox couple in phosphate buffer solution, pH 7.40. During analysis, the ABTS radical cation was enzymatically produced by peroxidase in a tubular flow-through reactor. The performance of bioreactor was tested at different concentrations of immobilized enzyme, ABTS and hydrogen peroxide. The influence of flow rate on proper operation of the bioreactor was also studied. The results of antioxidant activity were determined using Trolox as a standard. The applied IDE detector accomplished good sensitivity of 0.3 nA/μM of Trolox and offered linear range between 20 to 500 μM of Trolox.The comparison of results (R2 = 0.9915) for antioxidant activity between spectroscopic and FIA biamperometric measurements by interdigitated electrodes confirmed the applicability of the proposed method for determination of antioxidant capacity.  相似文献   

17.
Screen-printed carbon electrodes have been modified with tetrathiafulvalene and sulfite oxidase enzyme for the sensitive and selective detection of sulfite. Amperometric experimental conditions were optimized taking into account the importance of quantifying sulfite in wine samples and the inherent complexity of these samples, particularly red wine. The biosensor responds to sulfite giving a cathodic current (at +200 mV vs screen-printed Ag/AgCl electrode and pH 6) in a wide concentration range, with a capability of detection of 6 μM (α = β = 0.05) at 60 °C. The method has been applied to the determination of sulfite in white and red samples, with averages recoveries of 101.5% to 101.8%, respectively.  相似文献   

18.
A practical biosensor system has been developed for the determination of urinary glucose using a flow-injection analysis (FIA) amperometric detector and ion-exchange chromatography. Glucose oxidase was immobilized onto porous aminopropyl glass beads via glutaraldehyde activation to form an immobilized enzyme column. On the basis of its negative charge at pH 5.5, endogenous urate in urine samples was effectively retained by an upstream anion-exchange resin column. The biosensor system possessed a sensitivity of 160 ±2.4 RU μM-1 (RU or relative unit is defined as 2.86 μV at the detection output) for glucose with a minimum detection level of 10 μM. When applied for the determination of urinary glucose, the result obtained compared very well with that of the widely accepted hexokinase assay. The immobilized glucose oxidase could be reused for more than 1000 repeated analyses without losing its original activity. The reuse of the acetate anion-exchange column before replacement would be about 25–30 analyses. Acetaminophen and ascorbic acid were also effectively adsorbed by the acetate anion exchanger. The introduction of this type of anion exchanger thus greatly improved the selectivity of the FIA biosensor system and fostered its applicability for the determination of glucose in urine samples.  相似文献   

19.
Feng Li 《Talanta》2009,77(4):1304-1308
A simple and reliable one-pot approach was established for the development of a novel hydrogen peroxide (H2O2) biosensor based on in situ covalent immobilization of horseradish peroxidase (HRP) into biocompatible material through polysaccharide-incorporated sol-gel process. Siloxane with epoxide ring and trimethoxy anchor groups was applied as the bifunctional cross-linker and the inorganic resource for organic-inorganic hybridization. The reactivity between amine groups and epoxy groups allowed the covalent incorporation of HRP and the functional biopolymer, chitosan (CS) into the inorganic polysiloxane network. Some experimental variables, such as mass ratio of siloxane to CS, pH of measuring solution and applied potential for detection were optimized. HRP covalently immobilized in the hybrid matrix possessed high electrocatalytic activity to H2O2 and provided a fast amperometric response. The linear response of the as-prepared biosensor for the determination of H2O2 ranged from 2.0 × 10−7 to 4.6 × 10−5 mol l−1 with a detection limit of 8.1 × 10−8 mol l−1. The apparent Michaelis-Menten constant was determined to be 45.18 μmol l−1. Performance of the biosensor was also evaluated with respect to possible interferences. The fabricated biosensor exhibited high reproducibility and storage stability. The ease of the one-pot covalent immobilization and the biocompatible hybrid matrix serve as a versatile platform for enzyme immobilization and biosensor fabricating.  相似文献   

20.
The aim of our present work was to develop a flow-through measuring apparatus for the determination of glucose content as model system in organic media and to compare the properties of the biosensor in organic and in aqueous solutions. Glucose oxidase (GOx) enzyme was immobilized on a natural protein membrane in a thin-layer enzyme cell, made of Teflon. The enzyme cell was connected into a flow injection analyzer (FIA) system with an amperometric detector. After optimizing the system the optimal flow rate was found at 0.8 ml min−1. In this case 50-60 samples were measured per hour. Adding ferrocene monocarboxylic acid (FMCA) to acetonitrile and to 2-propanol the optimal concentration was 5 mg l−1, while in the case of tetrabutylammonium-p-toluenesulfonate (TBATS) the optima were 2.7 and 8.0 mg l−1, respectively. With 6% buffer in acetonitrile containing FMCA more than 100 samples could be measured with the enzyme cell without any loss of activity. Measuring the hydrogen peroxide content produced in 2-propanol, the optimal concentration of buffer solution was at about 20%. The linear measuring range was 0-0.5 mM glucose in acetonitrile and 0-1.0 mM in 2-propanol.Glucose concentration of oily food samples was measured and compared with results obtained by the reference UV-photometric method. The correlation between the results measured by the two methods was very good with correlation coefficient (r) as high as 0.976.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号