首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To improve the reproducibility, stability, and sensitivity of bismuth film electrode (BiFE), we studied the performances of a mixed coating of two cation‐exchange polymers, Nafion (NA) and poly(sodium 4‐styrenesulfonate) (PSS), modified glassy carbon BiFE (GC/NA‐PSS/BiFE). The characteristics of GC/NA‐PSS/BiFE were investigated by scanning electron microscopy and cyclic voltammetry. Various parameters were studied in terms of their effect on the anodic stripping voltammetry (ASV) signals. Under optimized conditions, the limits of detection were 71 ng L?1 for Cd(II) and 93 ng L?1 for Pb(II) with a 10 min preconcentration. The results exhibited that GC/NA‐PSS/BiFE can be a reproducible and robust tool for monitor of trace metals by ASV rapidly and environmentally friendly, even in the presence of surface‐active compounds.  相似文献   

2.
This paper describes a comparative study of the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in highly saline samples (seawater, hydrothermal fluids, and dialysis concentrates) by ASV using the mercury‐film electrode (MFE) and the bismuth‐film electrode (BiFE) as working electrodes. The features of MFE and BiFE as working electrodes for the single‐run ASV determinations are shown and their performances are compared with that of HMDE under similar conditions. It was observed that the stripping peak of Tl(I) was well separated from Cd(II) and Pb(II) peaks in all the studied saline samples when MFE was used. Because of the severe overlapping of Bi(III) and Cu(II) stripping peaks in the ASV using BiFE, as well as the overlapping of Pb(II) and Tl(I) stripping peaks in the ASV using HMDE, the simultaneous determination of these metals was not possible in highly saline medium using these both working electrodes. The detection limits calculated for the metals using MFE and BiFE (deposition time of 60 s) were between 0.043 and 0.070 μg L?1 for Cd(II), between 0.060 and 0.10 μg L?1 for Pb(II) and between 0.70 and 8.12 μg L?1 for Tl(I) in the saline samples studied. The detection limits calculated for Cu(II) using the MFE were 0.15 and 0.50 μg L?1 in seawater/hydrothermal fluid and dialysis concentrate samples, respectively. The methods were applied to the simultaneous determination of Cd(II), Pb(II), Tl(I), and Cu(II) in samples of seawater, hydrothermal fluids and dialysis concentrates.  相似文献   

3.
《Electroanalysis》2002,14(24):1707-1712
A study is presented on the characterization, evaluation and optimization of several key operational parameters for a reliable and effective use of a bismuth film electrode (BiFE) as an advanced replacement of the mercury film electrode in anodic stripping voltammetric measurements of trace heavy metals. Applying in situ preparation of the BiFE and employing lead(II) and cadmium(II) as model analyte ions, key parameters including bismuth precursor salt and substrate surface (platinum, gold, glassy carbon, carbon paste, carbon fiber) for bismuth plating, concentration as well as cationic and anionic composition of the measurement solution, solution pH and temperature, potential interferents, and stripping modes were carefully examined for their effects in the preconcentration and stripping steps. Parameters such as substrate surface (except platinum), precursor salt, solution matrix and temperature showed no or little impact on the BiFE performance in stripping analysis. On the other hand, the BiFE performance was found to be dependent on the solution pH (with maximum efficiency in the range of 4 to 5), on the stripping mode (with square‐wave voltammetry as the best choice) and to a certain degree on the presence of surface active substances. The results revealed that the non‐toxic solid‐state BiFE is applicable under a wide variety of conditions which proves it highly suitable for practical work in environmental trace heavy metal analysis.  相似文献   

4.
A cost-effective sequential injection monosegmented flow analysis (SI-MSFA) with anodic stripping voltammetric (ASV) detection has been developed for determination of Cd(II) and Pb(II). The bismuth film working electrode (BiFE) was employed for accumulative preconcentration of the metals by applying a fixed potential of −1.10 V versus Ag/AgCl electrode for 90 s. The SI-MSFA provides a convenient means for preparation of a homogeneous solution zone containing sample in an acetate buffer electrolyte solution and Bi(III) solution for in situ plating of BiFE, ready for ASV measurement at a flow through thin layer electrochemical cell. Under the optimum conditions, linear calibration graphs in range of 10-100 μg L−1 of both Cd(II) and Pb(II) were obtained with detection limits of 1.4 and 6.9 μg L−1 of Cd(II) and Pb(II), respectively. Relative standard deviations were 2.7 and 3.1%, for 11 replicate analyses of 25 μg L−1 Cd(II) and 25 μg L−1 Pb(II), respectively. A sample throughput of 12 h−1 was achieved with low consumption of reagent and sample solutions. The system was successfully applied for analysis of water samples collected from a draining pond of zinc mining, validating by inductively coupled plasma-optical emission spectroscopy (ICP-OES) method.  相似文献   

5.
Bismuth film electrode (BiFE) is presented as a promising alternative to mercury electrodes for the simultaneous determination of trace cobalt and nickel in non-deoxygenated solutions. The preplated BiFE was employed under adsorptive stripping constant current chronopotentiometric and adsorptive stripping voltammetric conditions in the presence of dimethylglyoxime complexing agent. BiFE exhibited well-defined and undistorted signals with favorable overall resolution for cobalt and nickel cations, with the signals for both metal cations being practically independent of each other. The stripping performance of BiFE is characterized by good reproducibility (RSD 1.4% for Co(II), and 4.3% for Ni(II)), low detection limits of 0.08 μg l−1 for Co(II) and 0.26 μg l−1 for Ni(II) employing a deposition time of 60 s, in addition to good linearity. The non-toxic character of bismuth imparts the possibility of tailoring disposable and one-shot electrochemical sensors for decentralized environmental, clinical and industrial monitoring of trace cobalt and nickel.  相似文献   

6.
Catalytic adsorptive stripping voltammetry (CAdSV) has been demonstrated at a bismuth film electrode (BiFE) in an injection-moulded electrochemical micro-flow cell. The polystyrene three-electrode flow cell was fabricated with electrodes moulded from a conducting grade of polystyrene containing 40% carbon fibre, one of which was precoated with Ag to enable its use as an on-chip Ag/AgCl reference electrode. CAdSV of Co(II) and Ni(II) in the presence of dimethylglyoxime (DMG) with nitrite employed as the catalyst was performed in order to assess the performance of the flow cell with an in-line plated BiFE. The injection-moulded electrodes were found to be suitable substrates for the formation of BiFEs. Key parameters such as the plating solution matrix, plating flow rate, analysis flow rate, solution composition and square-wave parameters have been characterised and optimal conditions selected for successful and rapid analysis of Co(II) and Ni(II) at the ppb level. The analytical response was linear over the range 1 to 20 ppb and deoxygenation of the sample solution was not required. The successful coupling of a microfluidic flow cell with a BiFE, thereby forming a “mercury-free” AdSV flow analysis sensor, shows promise for industrial and in-the-field applications where inexpensive, compact, and robust instrumentation capable of low-volume analysis is required.  相似文献   

7.
This work reports on the fabrication, characterization and applications of Nafion-coated bismuth-film electrodes (NCBFE's) for the determination of trace metals by anodic stripping voltammetry (ASV). A NCBFE was typically prepared by first applying a 5 microl drop of a 1% Nafion solution onto the surface of a glassy-carbon rotating-disk electrode. After evaporation of the solvent, the Bi film was plated on the electrode in situ(i.e. by spiking the sample with 1000 microg l(-1) of Bi(iii) and simultaneous electrolytic deposition of the metal ions and bismuth film on the electrode surface at -1.4 V) or ex-situ(i.e. by electrolytic deposition of the bismuth film in a separate solution containing 1000 microg l(-1) of Bi(iii), followed by the ASV measurement step in the sample solution). Various fabrication and operational parameters were thoroughly investigated and discussed in terms of their effect on the ASV signals. It was found that this voltammetric sensor was suitable for the determination of metals at trace levels by square-wave ASV (SWASV) due to its multi-element detection potential, improved analytical sensitivity, high resistance to surfactants, low cost, ease of fabrication, robustness, speed of analysis and low toxicity (as compared to traditional mercury electrodes). In the presence of 4 mg l(-1) of Triton X-100, the NCBFE afforded a 10-fold peak height enhancement for the Pb peak and a 14-fold enhancement for the Cd peak over a bare BFE while the determination of Zn was feasible only on the NCBFE. The limits of detection (at a signal-to-noise ratio of 3) were 0.1 microg l(-1) for Cd and Pb and 0.4 microg l(-1) for Zn for a deposition time of 10 min. Finally, the electrode was applied to different real samples (tap-water, urine and wine) for the analysis of trace metals with satisfactory results.  相似文献   

8.
In this work,we reported a simultaneous determination approach for Pb(II),Cd(II)and Zn(II)atμg L 1concentration levels using differential pulse stripping voltammetry on a bismuth film electrode(BiFE).The BiFE could be prepared in situ when the sample solution contained a suitable amount of Bi(NO)3,and its analytical performance was evaluated for the simultaneous determination of Pb(II),Cd(II)and Zn(II)in solutions.The determination limits were found to be 0.19μg L 1for Zn(II),and0.28μg L 1for Pb(II)and Cd(II),with a preconcentration time of 300 s.The BiFE approach was successfully applied to determine Pb(II),Cd(II)and Zn(II)in tea leaf and infusion samples,and the results were in agreement with those obtained using an atomic absorption spectrometry approach.Without Hg usage,the in situ preparation for BiFE supplied a green and acceptability sensitive method for the determination of the heavy metal ions.  相似文献   

9.
In this work, we describe an automated stripping analyzer operating on a hybrid flow-injection/sequential-injection (FIA/SIA) mode and utilizing a bismuth-film electrode (BiFE) as a flow-through sensor for on-line stripping voltammetry of trace metals. The instrument combines the advantages of FIA and SIA and is characterised by simplicity, low-cost, rapidity, versatility and low consumption of solutions. The proposed analytical flow methodology was applied to the determination of Cd(II) and Pb(II) by anodic stripping voltammetry (ASV) and of Ni(II) and Co(II) by adsorptive stripping voltammetry (AdSV). The steps of the rather complex experimental sequence (i.e. the bismuth-film formation, the analyte accumulation, the voltammetric stripping and the electrode cleaning/regeneration) were conducted on-line and the critical parameters related to the respective analytical procedures were investigated. In ASV, for a accumulation time of 180 s the limits of detection for Cd(II) and Pb(II) were 2 and 1 μg l−1, respectively (S/N = 3) and the relative standard deviations were 5.3% and 4.7%, respectively (n = 8). In AdSV, for a total sample volume of 1000 μl, the limits of detection for Ni(II) and Co(II) were 1 μg l−1 (S/N = 3) and the relative standard deviations were 5.5% and 6.2%, respectively (n = 8). The measurement frequency ranged between 15 and 20 stripping cycles h−1. The results indicate that the BiFE is well suited as a flow-through detector for on-line stripping analysis and, by virtue of its low toxicity, can serve as a viable alternative to mercury-based flow-through electrodes.  相似文献   

10.
The potentiality of the ex situ deposited bismuth film electrode, allied to the rotation of a glassy carbon disk electrode (BiFE‐RDE), was exploited in trace metal analyses of lead(II) and cadmium(II) by stripping chronopotentiometry (SCP). A single BiFE (6.2 nm film thickness) can be used for a 1‐day term with no significant variation in the analytical signal. The limit of detection (3σ) for a deposition time of 40 s and an oxidation current of 15×10?9 A was 1.5×10?8 M for Pb(II) and 3.0×10?8 M for Cd(II). BiFE‐RDE was successfully applied to the direct SCP determination of lead(II) in a fresh water certified material.  相似文献   

11.
Hwang GH  Han WK  Park JS  Kang SG 《Talanta》2008,76(2):301-308
A bismuth-modified carbon nanotube electrode (Bi-CNT electrode) was employed for the determination of trace lead, cadmium and zinc. Bismuth film was prepared by in situ plating of bismuth onto the screen-printed CNT electrode. Operational parameters such as preconcentration potential, bismuth concentration, preconcentration time and rotation speed during preconcentration were optimized for the purpose of determining trace metals in 0.1M acetate buffer solution (pH 4.5). The simultaneous determination of lead, cadmium and zinc was performed by square wave anodic stripping voltammetry. The Bi-CNT electrode presented well-defined, reproducible and sharp stripping signals. The peak current response increased linearly with the metal concentration in a range of 2-100 microg/L. The limit of detection was 1.3 microg/L for lead, 0.7 microg/L for cadmium and 12 microg/L for zinc (S/N=3). The Bi-CNT electrode was successfully applicable to analysis of trace metals in real environments.  相似文献   

12.
Voltammetric sensors based on bismuth film electrodes are an attractive alternative to other sensors for application in electroanalysis of heavy metals. Bismuth film electrodes can be formed by a similar method on the same substrates as mercury. These systems were used most frequently for simultaneous determination of heavy metals such as Pb, Cd and Zn by anodic stripping voltammetry. Our voltammetric sensor was fabricated on an alumina substrate. A photoresist film prepared by pyrolysis of positive photoresist S‐1813 SP15 on the alumina substrate was used as an electrode support for bismuth film deposition. The influence of the Nafion membrane on the measurement sensitivity of the sensor and mechanical stability of the bismuth film were investigated. The sensor was successfully applied for determination of Pb, Cd and Zn in an aqueous solution in the concentration range of 0.2 to 10 µg L?1 by square wave anodic stripping voltammetry on an in‐situ formed bismuth film electrode with Nafion‐coating. Parameters of the sensor such as sensitivity, linearity, detection limit, repeatability and life‐time were evaluated. In the best case, the detection limits were estimated as 0.07, 0.11 and 0.63 µg L?1 for Pb, Cd and Zn, respectively. Finally, the applicability of the sensor was tested in analysis of Pb, Cd and Zn in real samples of tap and river water using the method of standard additions.  相似文献   

13.
Summary Based on high-pressure ashing, the potential to determine some trace metals (Zn, Cd, Pb, Cu, Ni, Co, Al, Tl, Cr, Fe) by anodic or cathodic stripping voltammetry in the square wave (SWV) and differential pulse modes (DPASV) is described. In comparison to the differential pulse mode, the square wave mode shows advantages for cathodic stripping and for zinc determination.New developments by use of potentiometric stripping analysis (PSA) permit the determination of Pb and Cd in whole blood without sample pretreatment and Pb, Cd, and Cu in milk and milk powder with simple pretreatment.Mercury film microelectrodes prepared by electrodeposition of Hg onto a carbon fiber were used for the rapid multicomponent trace determination of heavy metals in very small (5 l) samples by voltammetry and potentiometry.
Gegenwärtiges Potential elektrochemischer Methoden für Metallbestimmungen in Referenzmaterialien
  相似文献   

14.
《Analytical letters》2012,45(5):761-777
This article reviews the use of square wave anodic stripping voltammetry for the simultaneous determination of ecotoxic metals (Pb, Cd, Cu, and Zn) on a bismuth-film (BiFE) electrode. The BiFE was prepared in situ on a glassy-carbon electrode (GCE) from the 0.1 mol L?1 acetate buffer solution (pH 4.5) containing 200 µg L?1 of bismuth (III). The addition of hydrogen peroxide to the electroanalytical cell proved beneficial for the interference-free determination of Cu (II) together with zinc, lead, and cadmium, using the BiFE. The experimental variables were investigated and optimized with the view to apply this type of voltammetric sensor to real samples containing traces of these metals. The performance characteristics, such as reproducibility, decision limit (CCa), detection capability (CCβ), sensitivity, and accuracy indicated that the method holds promise for trace Cu2+, Pb2+, Cd2+, and Zn2+ levels by employment of Hg-free GCE with SWASV. CCa, and CCβ were calculated according to the Commission Decision of 12 August 2002 (2002/657/EC). Linearity was observed in the range 20–280 µg L?1 for zinc, 10–100 µg L?1 for lead, 10–80 µg L?1 for copper, and 5–50 µg L?1 for cadmium. Using the optimized conditions, the stripping performance of the BiFE was characterized by low limits of detection (LOD). Finally, the method was successfully applied in real as well as in certified reference water samples.  相似文献   

15.
The application of protective overoxidized poly‐1‐naphtylamine membrane (ONAP) is demonstrated in combination with bismuth film microelectrode (ONAP‐BiFME) for anodic stripping voltammetric measurement of trace heavy metals in the presence of some selected surfactants. The ONAP membrane was electrochemically deposited on the surface of bare single carbon fiber microelectrode followed by the in situ or ex situ preparation of the bismuth film. The key operational parameters influencing the stripping performance of the ONAP‐BiFME were optimized and its electroanalytical performance was examined in the model solution containing Cd(II) and Pb(II) as test metal ions. The ONAP‐BiFME exhibited significantly enhanced stripping voltammetric response (approximately 70% for Cd(II) and 45% for Pb(II)) in comparison with unmodified BiFME in the absence of surfactants. In the presence of high concentrations, e.g., 20 mg L?1, of anionic or cationic surfactants, the stripping signal for, e.g., Cd(II) decreased for less than 6% at the ONAP‐BiFME, whereas at the unmodified BiFME the signal attenuated considerably (approximately 38%). Moreover, in the presence of 10 mg L?1 of nonionic surfactant Triton X‐100, the stripping signals at the bare BiFME were almost completely suppressed, whereas at the ONAP‐BiFME exhibited linear concentration behavior in the examined concentration range from 10 to 120 μg L?1, with the calculated limit of detection of 5.0 μg L?1 and 3.4 μg L?1 for Cd(II) and Pb(II), respectively in connection with 60 s accumulation time. The attractive behavior of ONAP‐modified BiFME expands the applicability of bismuth‐based electrodes for measurement of trace heavy metals in real environments, where the presence of more complex matrix can be expected.  相似文献   

16.
New insights into the functioning, i.e. electrochemical behaviour and analytical performance, of in situ prepared antimony film electrodes (SbFEs) under square-wave anodic stripping (SW-ASV) and cyclic (CV) voltammetry conditions are presented by studying several key operational parameters using Pb(II), Cd(II) and Zn(II) as model analyte ions. Five different carbon- and metal-based substrate transducer electrodes revealed a clear advantage of the former ones while the concentration of the precursor Sb(III) ion exhibited a distinct influence on the ASV functioning of the SbFE. Among six acids examined as potential supporting electrolytes the HNO3 was demonstrated to yield nearly identical results in conducting ASV experiments with SbFE as so far almost exclusively used HCl. This is extremely important as HNO3 is commonly employed acidifying agent in trace metal analysis, especially in elemental mass spectrometry measurements. By carrying out a systematic CV and ASV investigation using a medium exchange protocol, we confirmed the formation of poorly soluble oxidized Sb species at the substrate electrode surface at the end of each stripping step, i.e. at the potentials beyond the anodic dissolution of the antimony film. Hence, the significance of the cleaning and initializing the surface of a substrate electrode after accomplishing a stripping step was thoroughly studied in order to find conditions for a complete removal of the adhered Sb-oxides and thus to assure a memory-free functioning of the in situ prepared SbFE. Finally, the practical analytical application of the proposed ASV method was successfully tested and evaluated by measuring the three metal analytes in ground (tap) and surface (river) water samples acidified with HNO3. Our results approved the appropriateness of the SbFE and the proposed method for measuring low μg L−1 levels of some toxic metals, particularly taking into account the possibility of on-field testing and the use of low cost instrumentation.  相似文献   

17.
《Analytical letters》2012,45(7):1000-1013
Abstract

A Nafion/ionophore, 4-tert-butylcalix[4]arene-tetrakis(N,N-dimethylthioacetamide) composite coated and bismuth film modified glassy carbon electrode. (GC/NA-IONO/BiFE) was described to determine trace lead sensitively and selectively. The characteristics of such modified GC/NA-IONO/BiFE were studied by scanning electron microscopy and cyclic voltammetry. The influence of various experimental parameters upon the stripping lead signal at the GC/NA-IONO/BiFE was explored. Under the optimized conditions, the differential pulse voltammetric stripping response is highly linear over the 0.1–8.0 nM lead range examined (180 s preconcentration at ?1.2 V), with a detection limit of 0.044 nM and good precision (RSD = 5.4% at 0.5 nM). Also applicability to seawater samples was demonstrated at such modified electrode. The high selectivity of ionophore coupled with the excellent electrochemical characteristics of bismuth endow the GC/NA-IONO/BiFE a promising and robust tool for monitoring of trace lead rapidly and precisely.  相似文献   

18.
A comparative study of the usual static mercury drop electrode (SMDE) and the bismuth film electrode (BiFE) as applied to the analysis of metal complexation by thiol-rich peptides is done. Preliminary experiments on BiFE by differential pulse voltammetry showed that Cd(II) and Pb(II)-ions behave in a similar way as using stripping voltammetry and stripping chronopotentiometry with regard to some splitting effects of the signals. Additionally, on BiFE glutathione (GSH) and some phytochelatins (PCn) produce quite irregular signals related to the anodic oxidation of bismuth, which restricted the studies to a narrower concentration range than on SMDE. In the presence of both metal ion and peptide the same characteristic signals were observed on BiFE and SMDE, but better resolution was achieved in the first one, allowing a qualitative analysis of the complexation process for the Pb-GSH system which was not possible on SMDE. This suggests that BiFE may be a complementary tool to Hg electrodes, if not a valuable alternative, in the study of metal complexation.  相似文献   

19.
Li NB  Zhu WW  Luo JH  Luo HQ 《The Analyst》2012,137(3):614-617
The development and use of 'green' electrode materials is extremely attractive for the routine use of disposable metal sensors. Bismuth is an environmentally-friendly element and a bismuth film electrode was proposed as an alternative to mercury film electrodes. Compared with bismuth, stannum is a more 'environmentally friendly' material. The stannum-bismuth composite film electrode prepared by the in situ electrodeposition of stannum and bismuth on the glassy carbon substrate is reported for the first time. Compared with bismuth film and stannum film electrodes, the stannum-bismuth composite film electrode revealed better electroanalytical performance, and can be used as a possible alternative electrode for electrochemical stripping analysis of trace heavy metals.  相似文献   

20.
A new graphite-epoxy composite electrode (GECE) containing Bi(NO(3))(3) as a built-in bismuth precursor for simultaneous and individual anodic stripping analysis of heavy trace metals like lead and cadmium is reported. The developed Bi(NO(3))(3)-GECE is compatible with bismuth film electrodes reported previously including the composite electrodes (Bi-GECE) recently reported by our group. Bi(NO(3))(3)-GECE displays the ability for the detection of both individual and simultaneous determination of heavy trace metals and exhibits well defined, reproducible and sharp stripping signals. The sensitive response is combined with the minimal toxicity of Bi(NO(3))(3). This novel sensor would be an appropriate alternative tool to sensors using bismuth in solution during their utilization in environmental quality monitoring as well as other applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号