首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The two chromium chelates of Schiff bases, N-(acetoacetanilide)-1,2-diaminoethane (L1) and N,N′-bis(acetoacetanilide)-triethylenetetraammine (L2), have been synthesized and explored as neutral ionophores for preparing poly(vinylchloride) (PVC) based membrane sensors selective to Cr(III). The addition of lipophilic anion excluder (NaTPB) and various plasticizers viz. o-Nitrophenyloctyl ether (o-NPOE), dioctylpthalate (DOP), dibutylphthalate (DBP), tris(2-ethylhexyl)phosphate (TEHP), and benzyl acetate (BA) have found to improve the performance of the sensors. The best performance was obtained for the membrane sensor having a composition of L1:PVC:DBP:NaTPB in the ratio 5:150:250:3 (w/w). The sensor exhibits Nernstian response in the concentration range 8.9 × 10−8 to 1.0 × 10−1 M Cr3+ with limit of detection 5.6 × 10−8 M. The proposed sensor manifest advantages of relatively fast response (10 s) and good selectivity over some alkali, alkaline earth, transition and heavy metal ions. The selectivity behavior of the proposed electrode revealed a considerable improvement as compared to the best previously PVC-membrane electrode for chromium(III) ion. The potentiometric response of the proposed sensor was independent of pH of the test solution in the range of 2.0-7.0. The sensor has found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of methanol, ethanol and acetonitrile and could be used for a period of 3 months. The proposed electrode was used as an indicator electrode in potentiometric titration of chromium ion with EDTA and in direct determination in different water and food samples.  相似文献   

2.
The potentiometric response characteristics of Cu2+-selective electrodes based on bis(acetylacetone)propylenediimine (I) combined with anion localizing agent (sodium tetraphenyl borate (NaTPB)) and solvent mediators (dibutyl butyl phosphonate (DBBP), tri-n-butyl phosphate (TBP) and chloronaphthalene (CN)) were investigated. The best results for Cu2+ sensing was obtained for the electrode membrane containing PVC, I, DBBP and NaTPB in composition 5:100:200:6 (I:PVC:DBBP:NaTPB) (w/w; mg), where the electrode had a Nernstian response (30.0 mV/decade) to Cu2+ within the concentration range 1.0 × 10−5 to 1.0 × 10−1 M and detection limit of 0.5 ppm. The operational pH range of the electrode was 3.3-7.0. Selectivity characteristic of the proposed electrode was also assessed by calculating using fixed interference method matched potential method. The sensor has been successfully used in the potentiometric titration of copper ions with EDTA.  相似文献   

3.
Zinc(II)-selective sensors based on dibenzo-24-crown-8 in PVC matrix   总被引:1,自引:0,他引:1  
Membranes of dibenzo-24-crown-8 (I) as an ion active material in poly(vinylchloride) (PVC) based matrix have been tried for zinc(II)-selective sensors. The effect of anion excluder, sodium tetraphenylborate (NaTPB) and plasticizers, tris(2-ethylhexyl)phosphate (TEP), tributylphosphate (TBP), dibutylphthalate (DBP), dibutyl(butyl)phosphonate (DBBP), 1-chloronaphthalene (CN) and dioctylphthalate (DOP) on the performance of the membrane electrodes has also been studied. It was observed that the membrane having the composition (I): PVC:NaTPB:DOP in the ratio 10:200:2:100 gave the best results with a wide working concentration range of 9.2 × 10−5 to 1.0 × 10−1 M, Nernstian slope of 29.0 ± 0. 5 mV/decade of activity, fast response time of 12 s and good selectivity over a number of mono-, bi-, and trivalent cations. The sensor works well in a pH range 4.8-6.2 and can be employed for the estimation of zinc ions in partially non-aqueous medium having up to 10% (v/v) methanol, ethanol or acetone content. The practical utility of the sensor has been demonstrated by using it successfully as an indicator electrode in the potentiometric titration of Zn2+ with EDTA and also for the determination of Zn2+ in a real sample analysis of wastewater.  相似文献   

4.
A highly selective mercury electrode based on a diamine donor ligand   总被引:1,自引:0,他引:1  
Gupta VK  Chandra S  Lang H 《Talanta》2005,66(3):575-580
(H2NCHMeCH2NH2)(H2O)2HgCl2 (I) was synthesised, characterised and used for the fabrication of a potentiometric sensor for Hg2+ metal ions. Membrane having I as electroactive material, sodium tetraphenyl borate (NaTPB) as an anion excluder, dibutylamine (DBA) as plasticizer in PVC matrix in the percentage ratio of 10:3:150:150 (I:NaTPB:DBA:PVC) (w/w) exhibits a linear response to Hg2+ ions in a concentration range of 1.25 × 10−5 to 1.0 × 10−1 M having a detection limit of 8.9 × 10−6 with a slope of 25 ± 0.1 mV over the pH range 6.6-9.3. Selectivity coefficients for Hg(II) relative to a number of interfering ions were investigated. The electrode is highly selective for Hg2+ ions over a large number of mono-, bi-, and trivalent cations. Normal interferents like Ag+ and Cd2+ do not interfere in the working of the electrode. The electrode has also been used successfully in mixtures having a 10% (v/v) methanol and acetone content without showing any considerable change in working concentration range or slope. These electrodes have been found to be chemically inert showing a fast response time of 10 s and were used over a period of 4 months with good reproducibility (s = ±0.2). The electrode was used for determination of mercury in binary mixtures with 100% recovery and thus the proposed sensor can be used for real sample analysis.  相似文献   

5.
A new PVC membrane electrode for Co2+ based on N,N′-bis(salicylidene)-3,4-diaminotoluene, an excellent neutral carrier, has been fabricated using sodium tetraphenylborate (NaTPB) as an anionic excluder and dioctylphthalte (DOP) as a solvent mediator. The electrode exhibits a linear potential response in the concentration range of 7.9 × 10−8 to 1.0 × 10−1 M with a slope of 30 ± 0.2 mV per decade. The detection limit of the proposed sensor is 5.0 × 10−8 M and it can be used over a period of 5 months. The proposed sensor revealed good selectivity over a wide variety of other cations including alkali, alkaline earth, heavy and transition metals and could be used in the pH range of 2.0-9.0. This electrode was successfully applied for the determination of Co2+in real samples and as an indicator electrode in potentiometric titration of cobalt ions.  相似文献   

6.
A new pyrene-containing fluorescent sensor has been synthesized from 2,3,3-trimethylindolenine. Spectroscopic and photophysical properties of sensor are presented. The large change in fluorescence intensity (I/I0 = 0.13) at 381 nm and affinity to Hg2+ over other cations such as K+, Na+, Ca2+, Mg2+, Pb2+, and Cu2+ make this compound a useful chemosensor for Hg2+ detection in hydrophilic media. The sensor (6.0 × 10−6 M) displays significant fluorescence quenching upon addition of Hg2+ in pH 7.4 HEPES buffer without excimer formation. Job’s plot analysis shows the binding stoichiometry to be 2:1 (host/guest).  相似文献   

7.
Honglei Mu 《Tetrahedron letters》2007,48(31):5525-5529
A novel two-channel metal ion sensor has been synthesized from macrocyclic dioxotetraamine and 1,8-naphthalimide derivative. The metal ion-selective signaling behaviors of the sensor were investigated. The sensor presented the selective coloration for Cu2+ and Hg2+ that can be detected by the naked-eye, respectively. Besides, the addition of Cu2+ and Hg2+ quenched the fluorescence of 1 obviously and the detection limit was found to be 3 × 10−7 M for Cu2+ and 7 × 10−7 M for Hg2+. This sensor can be utilized for the visual and spectroscopic detection of Cu2+ or Hg2+ in the presence of the other competing metal ions.  相似文献   

8.
The potentiometric response characteristics of mercury ion-selective membrane electrodes based on 2-amino-6-purinethiol (I1) and 5-amino-1, 3, 4-thiadiazole-2-thiol (I2) were described. Ion selectivities were tested for various plasticizers, which were used as solvent mediators to incorporate the ionophores into the membrane. Effects of experimental parameters such as membrane composition, nature and amount of plasticizers and additives, pH and concentration of internal solution on the potential response of Hg2+ electrodes were investigated. The best performance was obtained with the electrode having a membrane composition (w/w) of (I1) (3.17%): PVC (31.7%): DOP (dioctylpthalate) (63.4%): NaTPB (sodium tetraphenylborate) (1.58%). The proposed electrode reveals a Nernstian response over Hg2+ ion in the concentration range of 7.0 × 10−8-1.0 × 10−1 M with limit of detection 4.4 × 10−8 M. The electrode shows good discrimination toward Hg2+ ion with respect to most common cations. It shows a short response time (10 s) for whole concentration range and can be used for 2 months without any considerable divergence in potentials. For evaluation of the analytical applicability, the electrode was used in the determination of Hg2+ ion in different environmental and biological samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.  相似文献   

9.
Three different derivatives of macrocyclic tetraimine Schiff's base have been synthesized and explored as a neutral ionophores for preparing poly(vinyl chloride) based membrane sensors selective to Dy3+. The addition of sodium tetraphenyl borate and various plasticizers, viz., o-NPOE, DBP, DBBP, DOP and CN has been found to substantially improve the performance of the sensors. The best performance was obtained with the sensor no. 1 having membrane of Schiff's base (SL-1) with composition (w/w) SL-1 (4.5%): PVC (30.5%): o-NPOE (59.5%): NaTPB (5.5%). This sensor exhibits Nernstian response with slope 19.4 mV/decade of activity in the concentration range of  10−8 to 1.0 × 10−2 M Dy3+, performs satisfactorily over wide pH range of (2.8-7.2) with a fast response time (10 s). The sensor was also found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of acetonitrile, methanol or ethanol. The proposed sensor can be used over a period of 1.5 months without significant drift in potentials. The sensor has been also utilized for the determination of Dy3+ level in different soil samples.  相似文献   

10.
The two nickel chelates of Schiff bases, 3-hydroxy-N-{2-[(3-hydroxy-N-phenylbutyrimidoyl)-amino]-phenyl}-N′-phenylbutyramidine (M1) and bis-4-(ethyliminomethyl)naphthalene-1-ol (M2), have been synthesized and explored as ionophores for preparing PVC-based membrane sensors selective to nickel ion. The influences of membrane compositions on the potentiometric response of the electrodes have been found to substantially improve the performance characteristics. The best performance was obtained with the electrode having a membrane composition (w/w; mg) of (M1): PVC:NaTPB:CN in the ratio 5:150:5:150. The sensor shows a linear potential response for Ni2+ over a wide concentration range 1.6 × 10−7 to 1.0 × 10−2 M with Nernstian compliance (30.0 ± 0.2 mV/decade of activity) within pH range 2.5-9.5 and a fast response time of 10 s. The sensor has been found to work satisfactorily in partially non-aqueous media up to 20% (v/v) content of methanol, ethanol, and acetonitrile and could be used for a period of 4 months. The analytical usefulness of the proposed electrode has been evaluated by its application in the determination of nickel in real samples. The practical utility of the membrane electrode has also been observed in the presence of surfactants.  相似文献   

11.
In this study, a multiplex fluorescence sensor for successive detection of Fe3+, Cu2+ and Hg2+ ions based on “on–off” of fluorescence of a single type of gold nanoclusters (Au NCs) is described. Any of the Fe3+, Cu2+ and Hg2+ ions can cause quenching fluorescence of Au NCs, which established a sensitive sensor for detection of these ions respectively. With the introduction of ethylene diamine tetraacetic acid (EDTA) to the system of Au NCs and metal ions, a restoration of fluorescence may be found with the exception of Hg2+. A highly selective detection of Hg2+ ion is, thus, achieved by masking Fe3+ and Cu2+. On the other hand, the masking of Fe3+ and Cu2+ leads to the enhancement of fluorescence of Au NCs, which in turn provides an approach for successive determination of Fe3+ and Cu2+ based on “on–off” of fluorescence of Au NCs. Moreover, this assay was applied to the successful detection of Fe3+, Cu2+ and Hg2+ in fish, a good linear relationship was found between these metal ions and the degree of quenched fluorescent intensity. The dynamic ranges of Hg2+, Fe3+ and Cu2+ were 1.96 × 10−10–1.01 × 10−9, 1.28 × 10−7–1.27 × 10−6 and 1.2 × 10−7–1.2 × 10−6 M with high sensitivity (the limit of detection of Fe3+ 2.0 × 10−8 M, Cu2+ 1.9 × 10−8 M and Hg2+ 2 × 10−10 M). These results indicate that the assay is suitable for sensitive detection of these metal ions even under the coexistence, which can not only determine all three kinds of metal ions successively but also of detecting any or several kinds of metal ions.  相似文献   

12.
In this article a new coated platinum Cu2+ ion selective electrode based on 2-((2-(2-(2-(2-hydroxy-5-methoxybenzylideneamino)phenyl)disufanyl)phenylimino) methyl)-4-methoxyphenol Schiff base (L1) as a new ionophore is described. This sensor has a wide linear range of concentration (1.2 × 10−7-1.0 × 10−1 mol L−1) and a low detection limit of 9.8 × 10−8 mol L−1of Cu(NO3)2. It has a Nernstian response with slope of 29.54 ± 1.62 mV decade−1 and it is applicable in the pH range of 4.0-6.0 without any divergence in potentioal. The coated electrode has a short response time of approximately 9 s and is stable at least for 3.5 months. The electrode shows a good selectivity for Cu2+ ion toward a wide variety of metal ions. The proposed sensor was successfully applied for the determination of Cu2+ ion in different real and environmental samples and as indicator electrode for potentiometric titration of Cu2+ ion with EDTA.  相似文献   

13.
Poly(vinylchloride) (PVC) based membranes of macrocycles 2,3,4:9,10,11-dipyridine-1,3,5,8,10,12-hexaazacyclotetradeca-2,9-diene (L1) and 2,3,4:9,10,11-dipyridine-1,5,8,12-tetramethylacrylate-1,3,5,8,10,12-hexaazacyclotetradeca-2,9-diene (L2) with NaTPB and KTpClPB as anion excluders and dibutylphthalate (DBP), benzyl acetate (BA), dioctylphthalate (DOP), o-nitrophenyloctyl ether (o-NPOE) and tri-n-butylphosphate (TBP) as plasticizing solvent mediators were prepared and investigated as Co2+ selective electrodes. The best performance was observed with the membranes having the composition L2:PVC:TBP:NaTPB in the ratio of 6:39:53:2 (w/w; mg). The performance of the membrane based on L2 was compared with polymeric membrane electrode (PME) and coated graphite electrode (CGE). The PME exhibits detection limit of 4.7 × 10−8 M with a Nernstian slope of 29.7 mV decade−1 of activity between pH 2.5 and 8.5 whereas CGE exhibits the detection limit of 6.8 × 10−9 M with a Nernstian slope of 29.5 mV decade−1 of activity between pH 2.0 and 9.0. The response time for PME and CGE was found to be 11 and 8 s, respectively. The CGE has been found to work satisfactorily in partially non-aqueous media up to 35% (v/v) content of methanol, ethanol and 25% (v/v) content of acetonitrile and could be used for a period of 4 months. The CGE was successfully applied for the determination of Co2+ in real and pharmaceutical samples and as an indicator electrode in potentiometric titration of cobalt ion.  相似文献   

14.
An optical sensor for mercury ion (Hg2+), based on quenching the fluorescence of the sensing reagent porphyrin immobilized in plasticized poly(vinyl chloride) (PVC) membrane, has been developed. The responses to mercury ion were compared for the sensors modified with three porphyrin compounds including 5,10,15,20-tetraphenylporphyrin (TPP), tetra(p-dimethylaminophenyl)porphyrin (TDMAPP) and tetra(N-phenylpyrazole) porphyrin (TPPP). Among them, TDMAPP showed the most remarkable response to Hg2+. The drastic decrease of the TDMAPP fluorescence intensity was attributed to the formation of a complex between TDMAPP and Hg2+, which has been utilized as the fabrication basis of a Hg2+-sensitive fluorescence sensor. The analytical performance characteristics of the TDMAPP modified sensor was investigated. The response mechanism, especially involving the response difference of three porphyrin compounds, was discussed in detail. The sensor can be applied to the quantification of Hg2+ with a linear range covering from 4.0 × 10−8 mol L−1 to 4.0 × 10−6 mol L−1. The limit of detection was 8.0 × 10−9 mol L−1. The sensor exhibited excellent reproducibility, reversibility and selectivity. Also, the TDMAPP-based sensor was successfully used for the determination of Hg2+ in environmental water samples.  相似文献   

15.
A new highly selective silver(I) electrode was prepared with a PVC membrane using 5,10,15-tris(pentafluorophenyl)corrole as an electroactive material, 2-nitrophenyl octyl ether (o-NPOE) as a plasticizer and sodium tetraphenylborate (NaTPB) as an additive in the percentage ratio of 3:3:62:32 (corrole:NaTPB:o-NPOE:PVC, w:w). The electrode exhibited linear response with a near Nernstian slope of 54.8 mV/decade within the concentration range of 5.1 × 10−6 to 1.0 × 10−1 M silver ions, with a working pH range from 4.0 to 8.0, and a fast response time of <30 s. Selectivity coefficients for Ag(I) relative to a number of interfering ions were investigated. The electrode is highly selective for Ag(I) ions over a large number of mono-, bi-, and tri-valent cations. Common interferents like Hg2+ and Cd2+ show very low interfering effect on the silver assay, which is valuable property of the proposed electrode. Several electroactive materials and solvent mediators have been compared and the experimental conditions were optimized. The sensor was applied to the determination of silver in real ore samples with satisfied results.  相似文献   

16.
Nickel(II)-selective sensor based on dibenzo-18-crown-6 in PVC matrix   总被引:1,自引:0,他引:1  
Nickel(II)-selective sensors have been fabricated from poly(vinyl chloride) (PVC) matrix membranes containing neutral carrier dibenzo-18-crown-6 as electroactive material, sodium tetraphenylborate (NaTPB) as an anion excluder and tris-(2-ethylhexyl) phosphate (TEHP) as plasticizing solvent mediator. The membrane having the composition of crown ether:NaTPB:TEHP:PVC in the ratio 10:1:200:200 (w/w) exhibits best results with linear potential response in the concentration range of 1.0 × 10−5 to 1.0 × 10−1 M and a Nernstian slope of 29.5 mV/decade of activity between 2.6 and 6.8. The sensor exhibits a fast response time of <25 s, is inert towards non-aqueous medium up to 15% (v/v) and was used over a period of 4 months with good reproducibility. It is selective over a number of mono-, bi- and trivalent cations. The practical utility of the sensor has been demonstrated by using it as an indicator electrode in the potentiometric titration of Ni2+ against EDTA and also for the estimation of Ni2+ in some Indian brand chocolates.  相似文献   

17.
Novel 5-amino-1,3,4-thiadiazole-2-thiol unit based macrocyclic ionophore 5,11,17-trithia-1,3,7,9,13,15,19,20,21-nonaazatetracyclo[14.2.1.14,7.110,13]henicosa-4(20),10(21),16(19)-triene-6,12,18-trithione (M1), was synthesized and characterized. Preliminary studies on M1 have showed that it has more the affinity toward Cd2+ ion. Thus, the macrocyclic ionophore (M1) was used as electroactive material in the fabrication of PVC-membrane electrodes such as polymeric membrane electrode (PME), coated graphite electrode (CGE) and coated pyrolytic graphite electrode (CPGE) were prepared and its performance characteristic were compared with. The electroanalytical studies performed on PME, CGE and CPGE revealed that CPGE having membrane composition M1:PVC:1-CN:NaTPB in the ratio of 7:37:54:2 exhibits the best potentiometric characteristics in terms of detection limit of 7.58 × 10−9 mol L−1, Nernstian slope of 29.6 mV decade−1 of activity. The sensor was found to be independent of pH in the range 2.5–8.5. The sensor showed a fast response time of 10 s and could be used over a period of 4 months without any significant divergence in its potentiometric characteristics. The sensor has been employed for monitoring of the Cd2+ ion in real samples and also used as an indicator electrode in the potentiometric titration of Cd2+ ion with EDTA.  相似文献   

18.
Jain AK  Gupta VK  Raisoni JR 《Talanta》2006,69(4):1007-1012
Polyvinyl chloride (PVC) based membranes using macrocyclic dithioxamide receptor (I) derived from isophthaloyl dichloride and dithioxamide have been prepared and explored as HPO42−-selective sensors. Effect of various plasticizers viz., bis(2-ethylhexyl) sebacate (DOS), dibutylphosphate (DBP), tri-n-butylphosphate (TBP), O-nitrophenyl octyl ether (NPOE), tris(2-ethylhexyl)phosphate (TEHP) and a cation excluder, tridodecylmethylammonium chloride (TDDMACl) was studied in detail and improved performance was observed at several instances. Optimum performance was observed with the membrane having (I)-PVC-TDDMACl-NPOE in the ratio 2:33:1.5:63.5 (w/w). The sensor works satisfactorily in the concentration range 1.7 × 10−6 to 1.0 × 10−2 M (detection limit 0.2 ppm) with Nernstian compliance (29.6 mV/decade of activity) at pH 8.0 with a fast response time of about 8 s. The potentiometric selectivity coefficient values as determined by the matched potential method (MPM) and the fixed interference method (FIM) indicate selective response for HPO42− in presence of interfering ions. The sensor exhibits adequate shelf life (∼2 months) with good reproducibility (S.D. ± 0.4 mV). The sensor was also used successfully in the potentiometric titration of HPO42− with Ba2+.  相似文献   

19.
Plasticized membranes using 2,3,4:12,13,14-dipyridine-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L1) and 2,3,4:12,13,14-dipyridine-1,5,8,11,15,18-hexamethylacrylate-1,3,5,8,11,13,15,18-octaazacycloicosa-2,12-diene (L2) have been prepared and explored as Ce(III) selective sensors. Effect of various plasticizers viz. dibutylphthalate (DBP), tri-n-butylphthalate (TBP), o-nitrophenyloctylether (o-NPOE), dioctylphthalate (DOP), benzylacetate (BA) and anion excluders, sodium tetraphenylborate (NaTPB) and potassium tetrakis p-(chlorophenyl) borate was studied in detail and improved performance was observed. Optimum performance was observed for the membrane sensor having a composition of L2:PVC:o-NPOE:KTpClPB in the ratio of 6:34:58:2 (w/w, mg). The performance of the membrane based on L2 was compared with polymeric membrane electrode (PME) as well as with coated graphite electrode (CGE). The electrodes exhibit Nernstian slope for Ce(III) ions with limits of detection of 8.3 × 10−8 mol L−1 for PME and 7.7 × 10−9 mol L−1 for CGE. The response time for PME and CGE was found to be 12 s and 10 s respectively. The potentiometric responses are independent of the pH of the test solution in the pH range 3.5-7.5 for PME and 2.5-8.5 for CGE. The CGE could be used for a period of 5 months. The practical utility of the CGE has been demonstrated by its usage as an indicator electrode in potentiometric titration of oxalate and fluoride ions with Ce(III) solution. The proposed electrode was also successfully applied to the determination of fluoride ions in mouthwash solution and oxalate ions in real samples.  相似文献   

20.
Pankaj Kumar 《Talanta》2009,77(3):1057-234
A new poly(vinyl chloride)-based membranes containing p-(4-n-butylphenylazo)calix[4]arene (I) as an electroactive material along with sodiumtetraphenylborate (NaTPB), and dibutyl(butyl)phosphonate in the ratio 10:100:1:200 (I:DBBP:NaTPB:PVC) (w/w) was used to fabricate a new cobalt(II)-selective sensor. It exhibited a working concentration range of 9.2 × 10−6 to 1.0 × 10−1 M, with a Nernstian slope of 29.0 ± 1.0 mV/decade of activity and the response time of 25 s. This sensor shows the detection limit of 4.0 × 10−6 M. Its potential response remains unaffected of pH in the range, 4.0-7.2, and the cell assembly can be used successfully in partially non-aqueous medium (up to 10%, v/v) without significant change in the slope of working concentration range. The sensor has a lifetime of about 3 months and exhibits excellent selectivity over a number of mono-, bi-, and tri-valent cations including alkali, alkaline earth metal, heavy and transition metal ions. It can be used as an indicator electrode for the end point determination in the potentiometric titration of cobalt ions against ethylenediaminetetraacetic acid (EDTA) as well as for the determination of cobalt ion concentration in real samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号