首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Generalized exponential integral functions (GEIF) are encountered in multi-dimensional thermal radiative transfer problems in the integral equation kernels. Several series expansions for the first-order generalized exponential integral function, along with a series expansion for the general nth order GEIF, are derived. The convergence issues of these series expansions are investigated numerically as well as theoretically, and a recurrence relation which does not require derivatives of the GEIF is developed. The exact series expansions of the two dimensional cylindrical and/or two-dimensional planar integral kernels as well as their spatial moments have been explicitly derived and compared with numerical values.  相似文献   

2.
Integral transformation techniques and the FN method are used to solve, for the case of isotropic scattering, radiative transfer problems in spherical and cylindrical geometries. Numerical results accurate to five or six significant figures are given for selected cases basic to problems with internal heat generation and emitting and diffusely reflecting surfaces.  相似文献   

3.
Because the optical plane defined by the incidence and reflection direction at a cylindrical surface has a complicated relation with the local azimuthal angle and zenith angle in the traditional cylindrical coordinate system, it is difficult to deal with the specular reflective boundary condition in the solution of the traditional radiative transfer equation for cylindrical system. In this paper, a new radiative transfer equation for graded index medium in cylindrical system (RTEGCN) is derived based on a newly defined cylindrical coordinate system. In this new cylindrical coordinate system, the optical plane defined by the incidence and reflection direction is just the isometric plane of the local azimuthal angle, which facilitates the RTEGCN in dealing with cylindrical specular reflective boundaries. A least squares finite element method (LSFEM) is developed for solving radiative transfer in single and multi-layer cylindrical medium based on the discrete ordinates form of the RTEGCN. For multi-layer cylindrical medium, a radial basis function interpolation method is proposed to couple the radiative intensity at the interface between two adjacent layers. Various radiative transfer problems in both single and multi-layer cylindrical medium are tested. The results show that the present finite element approach has good accuracy to predict the radiative heat transfer in multi-layer cylindrical medium with Fresnel surfaces.  相似文献   

4.
A new technique is presented to improve the performance of the discrete ordinates method when solving the coupled conduction-radiation problems in spherical and cylindrical media. In this approach the angular derivative term of the discretized one-dimensional radiative transfer equation is derived from an expansion of the radiative intensity on the basis of Chebyshev polynomials. The set of resulting differential equations, obtained by the application of the SN method, is numerically solved using the boundary value problem with the finite difference algorithm. Results are presented for the different independent parameters. Numerical results obtained using the Chebyshev transform method compare well with the benchmark approximate solutions. Moreover, the new technique can easily be applied to higher-order SN calculations.  相似文献   

5.
A radiation code based on method of lines (MOL) solution of discrete ordinates method (DOM) for radiative heat transfer in non-grey absorbing-emitting media was developed by incorporation of a gas spectral radiative property model, namely wide band correlated-k (WBCK) model, which is compatible with MOL solution of DOM. Predictive accuracy of the code was evaluated by applying it to 1-D parallel plate and 2-D axisymmetric cylindrical enclosure problems containing absorbing-emitting medium and benchmarking its predictions against line-by-line solutions available in the literature. Comparisons reveal that MOL solution of DOM with WBCK model produces accurate results for radiative heat fluxes and source terms and can be used with confidence in conjunction with computational fluid dynamics codes based on the same approach.  相似文献   

6.
A recent formulation in radiative transfer defined the thermal scattering functions that characterize radiative transfer from a general, plane-parallel, finite medium driven solely by an internal distribution of thermal sources. Exiting diffuse intensities are expressed as space convolutions of the thermal scattering functions with any thermal source distribution. A parametric study is presented to obtain the basic structure of these scattering functions. The independent variables of these azimuthally independent functions are the direction consine μ and source location t, while the parameters are the single scattering albedo ω, total optical depth t0, and the asymmetry factor g in the Henyey-Greenstein phase function. The basic functional trends are discussed using various parametric plots, and selected tabular results are given to allow numerical checks. The computational method is invariant imbedding. As a particular application, these functions are used in the following companion paper to obtain exiting intensities from inhomogeneous and nonisothermal media.  相似文献   

7.
We take the collapsing radiative fluid to investigate the dynamical instability with cylindrical symmetry. We match the interior and exterior cylindrical geometries. Dynamical instability is explored at radiative and non-radiative perturbations. We conclude that the dynamical instability of the collapsing cylinder depends on the critical value γ < 1 for both radiative and nonradiative perturbations.  相似文献   

8.
9.
The most reliable at present values of the level density in the fixed spin window and the sums of radiative strength functions of cascade gamma transitions are obtained from analysis of intensities of two-step cascades excited upon thermal neutron capture for approximately 40 nuclei in the mass range 40 ≤ A ≤ 200. The maximal reliability of these data is provided by the experimental conditions—minimum possible propagation error coefficients and practically unique solution of the problem of determination of gamma decay parameters from measured spectra. The experimental data are approximated by the sum of partial level densities corresponding to excitation of n quasiparticles. Steplike structures in the level density at excitation energies smaller than 3–4 MeV are described with good accuracy as the superposition of two-quasiparticle (three-quasiparticle in odd A nuclei) and vibrational excitations with the coefficient of collective density enhancement K coll ≈ 10?20. They correspond to excitation-energy-correlated maximum enhancement of the radiative strength functions of primary gamma transitions. The level density at larger excitation energies is well reproduced if the breakup of at least two more Cooper pairs of nucleons is taken into account. The increase in the number of excited quasiparticles in the nucleus corresponds to unconditional reduction of the radiative strength functions of primary gamma transitions of the compound state decay. However, the maximum possible value of partial widths of primary transitions increases regularly with decreasing energy. Some ambiguity in the results of approximation and divergence from existing theoretical ideas of the energy dependence of nucleon correlation functions in an excited nucleus point to the possibility of direct extraction from experiment of fundamentally new information on the structure of excited nuclear levels in the range of the neutron binding energy. These are, first of all, the parameters of dependence of nucleon correlation functions on the excitation energy of the nucleus.  相似文献   

10.
A method is proposed for simultaneously determining the interval of the most probable values of the density of levels excited in the radiative capture of slow neutrons and the sum of radiative E1 and M1 strength functions in the excitation-energy interval extending nearly up to the neutron binding energy. Experimental data on the intensities of two-step photon cascades between the compound state and a given low-lying level of the nucleus being studied are analyzed together with the total radiative widths of neutron resonances. Such an analysis can be performed for nuclei having an arbitrary level density, including deformed ones. The resulting data demonstrate that there are significant deviations from the predictions of commonly accepted level-density models—for example, the Fermi gas model—and specify the range of nuclei and the regions of their excitation energies where a further experimental investigation can furnish new important information about the properties of nuclear matter.  相似文献   

11.
圆柱坐标系下任意方向辐射强度的源项六流法模拟   总被引:1,自引:0,他引:1  
基于传统热流法,提出一种圆柱坐标系下的源项六流模型(Source Six Flux,SSF),可快速准确地计算参与性介质内任意方向的出射辐射强度.详细介绍SSF模型的基本原理和求解步骤,以圆柱形吸收、散射、发射性介质为例,模拟其沿任意方向的出射辐射强度,并与反向蒙特卡罗法(Backward Monte Carlo,BMC)和二流法(Two Flux Method,TFM)的计算结果进行比较.结果表明,SSF法与BMC法的计算结果吻合较好,计算精度均高于TFM法,但SSF法的计算效率明显优于BMC法.因此,SSF模型是一种适用于计算任意方向辐射强度问题的高效数值模型.  相似文献   

12.
In graded index medium, the ray goes along a curved path determined by Fermat principle, and the curved ray-tracing is very difficult and complex. To avoid the complicated and time-consuming computation of curved ray trajectory, the methods not based on ray-tracing technique need to be developed for the solution of radiative transfer in graded index medium. For this purpose, in this paper the streaming operator along a curved ray trajectory in original radiative transfer equation for graded index medium is transformed and expressed in spatial and angular ordinates and the radiative transfer equation for graded index medium in cylindrical and spherical coordinate systems are derived. The conservative and the non-conservative forms of radiative transfer equation for three-dimensional graded index medium are given, which can be used as base equations to develop the numerical simulation methods, such as finite volume method, discrete ordinates method, and finite element method, for radiative transfer in graded index medium in cylindrical and spherical coordinate systems.  相似文献   

13.
Based on the effective-mass approximation and variational procedure, ionized donor bound exciton (D+, X) states confined in strained wurtzite (WZ) GaN/AlxGa1-xN cylindrical (disk-like) quantum dots (QDs) with finite-height potential barriers are investigated, with considering the influences of the built-in electric field (BEF), the biaxial strain dependence of material parameters and the applied hydrostatic pressure. The Schrödinger equation via the proper choice of the donor bound exciton trial wave function is solved. The behaviors of the binding energy of (D+, X) and the optical transition associated with (D+, X) are examined at different pressures for different QD sizes and donor positions. In our calculations, the effective masses of electron and hole, dielectric constants, phonon frequencies, energy gaps, and piezoelectric polarizations are taken into account as functions of biaxial strain and hydrostatic pressure. Our results show that the hydrostatic pressure, the QD size and the donor position have a remarkable influence on (D+, X) states. The hydrostatic pressure generally increases the binding energy of (D+, X). However, the binding energy tends to decrease for the QDs with large height and lower Al composition (x<0.3) if the donor is located at z0≤0. The optical transition energy has a blue-shift (red-shift) if the hydrostatic pressure (QD height) increases. For the QDs with small height and low Al composition, the hydrostatic pressure dependence of the optical transition energy is more obvious. Furthermore, the relationship between the radiative decay time and hydrostatic pressure (QD height) is also investigated. It is found that the radiative decay time increases with pressure and the increment tendency is more prominent for the QDs with large height. The radiative decay time increases exponentially reaching microsecond order with increasing QD height. The physical reason has been analyzed in depth.  相似文献   

14.
李芳昱  唐孟希 《中国物理》1997,6(5):321-333
By using the general expressions of energy momentum pseudo-tensor of the cylin-drical gravitational waves (GW) given by Rosen and Virbhadra in Cartesian coor-dinates, the concrete forms of energy density and radiative energy flux of the pulse cylindrical GW are obtained. Their physical properties, suitable range and asymp-totic behaviour are considered. It is found that: For the region in which space radial coordinates to origin are greater than the pulse width of the pulse cylindrical GW, the energy density and radiative energy flux of the outward travelling pulse cylindrical GW propagating along at light-cone are positive definite. However, for the region in which the space radial coordinates are less than the pulse width, there is no guarantee for the positive definite property of the radiative energy flux of the outward travelling wave. Moreover, we show that the asymptotic behaviour of the energy and energy flux densities of the pulse cylindrical GW and that of the Riemann curvature tensor have good self-consistancy in space like, time like and null infinity regions.  相似文献   

15.
A standard problem in radiative transfer is finding the external and internal radiative fields produced by uniform, parallel rays illuminating the top of a one-dimensional, scattering and absorbing medium of finite optical thickness. This problem has been solved in several ways with various physical restrictions. One approach is by finding the source function that represents the rate of production of scattered radiation per unit volume per unit solid angle at each point in the medium. The present paper develops and uses the idea that the standard source function is an influence function for a given medium. The linearity of radiative transfer is then used to find certain general source functions in terms of the standard one. The usefulness of the above concept is demonstrated by the following four problems: (1) derivation of Chandrasekhar's four principles of invariance from the radiative transfer equation, (2) derivation of the equations governing Chandrasekhar's X- and Y- functions without using the invariance principles or resolvent kernels, (3) finding the source function for a medium with a Lambert's-law bottom, and (4) finding the source function for a medium with a bottom that is a perfect specular reflector.  相似文献   

16.
An analytical method was proposed for calculating radiative fluxes incident on a planar circular detector from a volume multiple point chemi- or bio-luminescent source inside a coaxial cylindrical reactor. The method was designed for a cylindrical reactor when the surface reflections were neglected and when chemi- or bio-luminescence reaches a detector embedded in the same homogeneous optical medium as the point emitters of the volume multiple point source model. The radiative fluxes from arbitrarily distributed point emitters were expressed by one generalized quadruple-integral formula. Then some double- and single-integral formulas were obtained for calculating radiative fluxes from identically radiating point emitters uniformly distributed within the reactor. Selected results were computed and illustrated graphically. The obtained formulas are suitable for optimizing and/or calibrating the considered source-detectors systems (optical radiometers or luminometers) and determining radiative fluxes generated by chemical, biological, and physical processes leading to chemi-, bio-, radio-, and sono-luminescence for example.  相似文献   

17.
Deviations from LTE are investigated in an atmosphere of hydrogen atoms with one bound level, satisfying the equations of radiative, hydrostatic, and statistical equilibrium. The departure coefficient and the kinetic temperature as functions of the frequency dependence of the radiative cross section are studied analytically and numerically. Near the outer boundary of the atmosphere, the departure coefficient b is smaller than unity when the radiative cross section αν grows with frequency ν faster than ν2; b exceeds unity otherwise. Far from the boundary the departure coefficient tends to exceed unity for any frequency dependence of αν. Overpopulation (b > 1) always implies that the kinetic temperature in the statistical equilibrium atmosphere is higher than the temperature in the corresponding LTE atmosphere. Upper and lower bounds on the kinetic temperature are given for an atmosphere with deviations from LTE only in the optically shallow layers when the emergent intensity can be described by a radiation temperature.  相似文献   

18.
Calculations of thes, p andd-wave neutron strength functions based on the spherical optical model have been performed for the mass region A=40–70. The aim was to investigate the radiative neutron capture observed in this region leading to final states with spin J=5?/2 and J=7?/2. Results of the calculation indicate thatd-wave neutron capture followed by E1 radiative decay is the most likely explanation of the process.  相似文献   

19.
For temperatures above 12,000 °K the contribution of non-transparent radiation becomes very important for the energy transport in argon and nitrogen arc plasmas. Formulas for the radiation flux and the difference between emission and absorption of radiation per unit volume and time are given generally and furthermore for arcs of cylindrical symmetry. For argon arcs at normal pressure with axial temperatures between 10,000 and 16,000 °K the radiative behaviour is investigated and the share of transparent and non-transparent radiation on the total energy flux is computed. The influence of different assumptions made on the amount of emission and absorption on theE(I)-characteristic and the radial temperature distributions is shown.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号