首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Halogenomethyl-dihalogen-indium(III) compounds X2InCH2X (X = Br, I) obtained from indium monohalides and methylene dihalides were reacted with the soft donor ligands dialkylsulfides, R2S (R = CH3, CH2Ph) to afford the corresponding dialkylsulfonium methylide complexes of InX3, X3InCH2SR2 (X = Br, R = CH3, 1; X = I, R = CH3, 2; X= I, R = CH2Ph, 3). Compound 1 was reacted with the hard donor ligands dimethylsulfoxide or triphenylphosphine oxide to give the corresponding 1:1 adduct, Br3(L)InCH2S(CH3)2 (L = (CH3)2SO, 4; L = (C6H5)3PO, 5). Compounds 1-5 were fully characterized in solution by NMR spectroscopy and in the solid state by X-ray methods.  相似文献   

2.
o-Phenylene-bridged trimethylcyclopentadienyl/amido titanium complexes [(η5-2,3,5-Me3C5H)C6H4NR-κN]TiCl2 (18, R = CH3; 19, R = CH2CH3; 20, R = CH2C(CH3)3; 21, R = CH2(C6H11)) and zirconium complexes {[(η5-2,3,5-Me3C5H)C6H4NR-κN]ZrCl-μCl}2 (22, R = CH3; 23, R = CH2CH3; 24, R = CH2C(CH3)3; 25, R = CH2(C6H11); 26, R = C6H11; 27, R = CH(CH2CH3)2) are prepared via a key step of the Suzuki-coupling reaction between 2-dihydroxyboryl-3-methyl-2-cyclopenten-1-one (2) and the corresponding bromoaniline compounds. The molecular structures of titanium complexes 18 and 19 and dinuclear zirconium complexes 24 and 26 were confirmed by X-ray crystallography. The Cp(centroid)-Ti-N and Cp(centroid)-Zr-N angles are smaller, respectively, than those observed for the Me2Si-bridged complex [Me2Si(η5-Me4C5)(NtBu)]TiCl2 and its Zr-analogue, indicating that the o-phenylene-bridged complexes are more constrained than the Me2Si-bridged complex. Titanium complex 19 exhibits comparable activity and comonomer incorporation to the CGC ([Me2Si(η5-Me4C5)(NtBu)]TiCl2) in ethylene/1-octene copolymerization. Complex 19 produces a higher molecular-weight polymer than CGC.  相似文献   

3.
The chemical kinetics, studied by UV/Vis, IR and NMR, of the oxidative addition of iodomethane to [Rh((C6H5)COCHCOR)(CO)(PPh3)], with R = (CH2)nCH3, n = 1-3, consists of three consecutive reaction steps that involves isomers of two distinctly different classes of RhIII-alkyl and two distinctly different classes of RhIII-acyl species. Kinetic studies on the first oxidative addition step of [Rh((C6H5)COCHCOR)(CO)(PPh3)] + CH3I to form [Rh((C6H5)COCHCOR)(CH3)(CO)(PPh3)(I)] revealed a second order oxidative addition rate constant approximately 500-600 times faster than that observed for the Monsanto catalyst [Rh(CO)2I2]. The reaction rate of the first oxidative addition step in chloroform was not influenced by the increasing alkyl chain length of the R group on the β-diketonato ligand: k1 = 0.0333 ([Rh((C6H5)COCHCO(CH2CH3))(CO)(PPh3)]), 0.0437 ([Rh((C6H5)COCHCO(CH2CH2CH3))(CO)(PPh3)]) and 0.0354 dmmol−1 s−1 ([Rh((C6H5)COCHCO(CH2CH2CH2CH3))(CO)(PPh3)]). The pKa and keto-enol equilibrium constant, Kc, of the β-diketones (C6H5)COCH2COR, along with apparent group electronegativities, χR of the R group of the β-diketones (C6H5)COCH2COR, give a measurement of the electron donating character of the coordinating β-diketonato ligand: (R, pKa, Kc, χR) = (CH3, 8.70, 12.1, 2.34), (CH2CH3, 9.33, 8.2, 2.31), (CH2CH2CH3, 9.23, 11.5, 2.41) and (CH2CH2CH2CH3, 9.33, 11.6, 2.22).  相似文献   

4.
The kinetics of hydrolysis of aliphatic ketone di-tert-butylperoxyketals R1R2C=O, R1, R2=CH3, CH3; CH3, C2H5; CH3, n-C3H7; CH3, n-C6H13; CH3, i-C5H10; CH3, i-C4H9; C2H5, i-C3H7; n-C4H9, n-C4H9; CH3, C6H5-CH2, in dioxane in the presence of H2SO4 were investigated by IR spectroscopy. It was found that the reaction is reversible and takes place according to the equation R1R2C· (OOC(CH3)3)2 + H2O;H+ R1R2C=O + 2HOOC(CH3)3. The proposed mechanism of hydrolysis includes the fast, quasiequilibrium formation of protonated peroxyketal and subsequent formation of the alkylperoxycarbenium ion. A three-parameter correlation equation is proposed for describing the initial rates of hydrolysis of R1R2C(oo-t-Bu)2 peroxyketals.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 11, pp. 2501–2506, November, 1990.  相似文献   

5.
A series of benzylideneanilines bearing terminal polyether chains, HL (HL = R-C6H4-CHN-C6H4-R′: R = OC8H17, R′ = O(CH2CH2O)2C2H5; R = O(CH2CH2O)2C2H5, R′ = OC8H17; R = R′ = O(CH2CH2O)2C2H5; R = OC12H25, R′ = O(CH2CH2O)3C2H5; R = O(CH2CH2O)3C2H5, R′ = OC12H25; R = R′ = O(CH2CH2O)3C2H5) have been prepared. Their dinuclear, [Pd(μ-X)L]2 (X = OAc, Cl, Br, SC8), [Pd2(μ-SCn)(μ-X)L2] (X = OAc, Cl; n = 8, 2) and mononuclear orthopalladated derivatives, Pd(acac)L, Pd(Ala)L, are reported and their mesogenic properties are compared with those of the analogous compounds with alkoxy chains. In general a great lowering in the melting points is produced for all the products. The free ligands and the alanine complexes are not liquid crystals. The chloro-bridged complexes bearing alkoxy and short polyether chains (O(CH2CH2O)2C2H5) show the larger improvement of mesogenic properties. Longer polyether chains (O(CH2CH2O)3C2H5) result usually in a destabilization of the mesophases. If only polyether chains are present, the destabilization is important regardless of the chain length. The ability of these molecules as ionic extractants and transporters was qualitatively evaluated for the more propitious cis-dinuclear complexes, which in fact showed some extracting ability, modest but improved compared to the free ligands.  相似文献   

6.
Efficiency and structural specificity earmark the reaction of phosphonium ions 1 with cyclic acetals and ketals to yield 1,3,2‐dioxaphospholanium ions 2 [Eq. (1)]. Potential applications of this reaction are in monitoring trace levels of organophosphorus esters and in developing novel carbonyl deprotection agents. R=OCH3, CH3; R1=H, CH3; R2=CH3, C6H5; R3=H, CH3.  相似文献   

7.
The rate-surfactant concentration profiles for the reaction of the insecticide paraoxon with hydroxamate ions (R(CO)·NHO, R = CH3, R = C6H5, R = 2-HOC6H4) in aqueous solutions of cetyltrimethylammonium salts, CTAX (X = Br, Cl, SO3H) have been measured at pH 11.0 at 30 °C. All these profiles are typical of micelle-assisted bimolecular reactions involving interfacial ion exchanges. The salicylhydroxymic acid-CTACl combination is most reactive.  相似文献   

8.
Perfluoroalkyl- or nonafluoro-tert-butoxy-alkyl-substituted enantiopure amines having the structure PhCHCH3(NR1R2) [R1 = H, CH3; R2 = (CH2)3C8F17, (CH2)2OC(CF3)3; R1 = R2 = (CH2)3C8F17, (CH2)2OC(CF3)3] are obtained in high yields, when (S)-(−)-1-phenylethylamine is reacted with readily accessible alkylating reagents or fluorous 2° amines (R1 = H; R2 = (CH2)3C8F17, (CH2)2OC(CF3)3) are methylated in a Leuckart-Wallach reaction. The solubility patterns of these novel chiral amines and their hydrochlorides are qualitatively described for a broad spectrum of solvents and the fluorous partition coefficients of the free bases are determined by GC. A novel method for the resolution of enantiomers is disclosed here, which involves the use a half-equivalent of the selected resolving agent in solvent water that displays low solubility for the crystalline diastereomeric salt(s) formed even at temperatures near to its boiling point. Compound (S)-(−)-PhCHCH3[NH(CH2)3C8F17] is found to satisfy all the latter conditions and successfully used for the heat facilitated resolution of the title racemic acid. The circular dichroism (CD) spectra of six novel fluorous (S)-(−)-1-phenylethylamine derivatives are measured in ethanol, trifluoroethanol and hexafluoropropan-2-ol and discussed in detail.  相似文献   

9.
A series of dinickel (II) complexes of bis-2-(C3HN2(R1)2-3,5)(C(R2)N(C6H3(CH3)2-2,6)Ni2Br4 (complex 1: R1 = CH3, R2 = Ph; complex 2: R1 = CH3, R2 = 2,4,6-trimethylphenyl; complex 3: R1 = R2 = Ph; complex 4: R1 = Ph, R2  = 2,4,6-trimethylphenyl) were synthesized and characterized. The solid-state structures of complexes 1, 2 and 3 have been confirmed by X-ray single-crystal analyses to be in the form of a dinuclear and bromine-bridged structure. However, there is an equilibrium that shifts between the monomer and dimmer in toluene based on the characterization of UV-vis spectrophotometry. Activated by methylaluminoxane (MAO), these complexes are capable of catalyzing the polymerization of norbornene with moderate activity up to 6.64 × 105 gPNBE/(molNi·h). The influences of polymerization parameters such as reaction temperature and Al/Ni molar ratio on catalytic activity and molecular weight of the polynorbornene were investigated in detail. The influence of the bulkiness of the substituents on polymerization activity was also studied. The obtained polynorbornenes were characterized by means of 1H NMR, FTIR and TG techniques. The analyses results of polymers’ structures indicated that the norbornene polymerization is vinyl-type polymerization rather than ROMP.  相似文献   

10.
The Raman spectra of several pairs of alkenyl methyl ethers of general structure R1R2CCR5C(R3R4)OCH3 and R1R2C(OCH3)C(R5)CR3R4 (R1, R2, R3, R4, R5 = H or CnH2n+1, n = 1-3) are reported and discussed, with a view to establishing whether Raman spectroscopy offers a viable means of distinguishing between these isomeric unsaturated species. Key bands associated with the ν(sp2CH) and ν(CC) stretching modes are found to be particularly useful in this connection: R1R2CCHCH2OCH3 and R1R2C(OCH3)CHCH2 ethers (R1, R2 = CH3, C2H5) are easily distinguished on this basis. Differentiation of their lower homologues, R1CHCHCH2OCH3 and R1CH(OCH3)CHCH2 (R1 = CH3, C2H5, C3H7), by similar means is also quite straightforward, even in cases where cis and trans isomers are possible. Pairs of isomeric ethers, such as CH3CHC(CH3)CH2OCH3 and CH3CH(OCH3)C(CH3)CH2, in which the structural differences are more subtle, may also be distinguished with care. Deductions based on bands ascribed to the stretching vibrations are usually confirmed by consideration of the signals associated with the corresponding δ(sp2CH) deformation vibrations. Even C2H5CHCHCH(C3H7)OCH3 and C3H7CHCHCH(C2H5)OCH3 are found to have distinctive Raman spectra, but differentiation of these closely related isomers requires additional consideration of the low wavenumber region.  相似文献   

11.
The metal β-diketiminato ligand-to-metal binding modes are briefly reviewed, with reference particularly to our previous work on metal complexes using the ligands [{N(R1)C(R2)}2CH] (R1 = SiMe3 = R and R2 = Ph; or R1 = C6H3Pri2-2,6 and R2 = Me). The syntheses of the β-diketimines H[{N(R)C(Ar)}2CH] 1 (Ar = Ph) and 2 (Ar = C6H4Me-4) and the ansa-CH2-bridged bis(β-diketimine)s 3 (Ar = Ph) and 4 (Ar = C6H4Me-4) are reported. Thus, from the appropriate compound Li[{N(R)C(Ar)}2CH] and H2O, (CH2Br)2 or CH2Br2 the product was 2, 3 or 4. Compound 1 was prepared from K[{N(R)C(Ph)}2CH] and (CH2Br)2. Each of 3 or 4 with LiBun surprisingly yielded the bicyclic dilithium compound 5 (Ar = Ph) or 6 (Ar = C6H4Me-4) in which each of the β-diketiminato fragments is an N,N′-bridge between the two lithium atoms and the CH2 moiety joins the two ligands through their central carbon atoms. However, 4 with AlMe3 yielded the expected ansa-CH2-bridged-bis[(β-diketiminato)(dimethyl)alane] 7, which was also obtained from 6 and Al(Cl)Me2. X-ray structures of the known compounds 2 and 3, and of 5, 6 and 7 are presented; the 1H NMR spectra of 6 in toluene-d8 show that there is restricted rotation about the NC-C6H4Me-4 bond.  相似文献   

12.
Novel substituted 2-[(2-hydroxyethyl)]aminophenols, MeN(CHR1CR2R3OH)(C6H4-o-OH) (2-5), were synthesized by the reaction of 2-methylaminophenol with corresponding oxiranes. Titano-spiro-bis(ocanes) [MeN(CHR1CR2R3O)(C6H4-o-O)]2Ti 6-9 (2, 6, R1 = H, R2 = R3 = Me; 3, 7, R1 = R2 = Ph (treo-), R3 = H; 4, 8, R1 = Ph, R2 = R3 = H; 5, 9, R1 = R2 = H, R3 = Ph) based on [ONO]-ligands have been synthesized. The obtained compounds were characterized by 1H and 13C NMR spectroscopy and elemental analysis data. The complex [Ti(μ2-O){O-o-C6H4}{μ2-CMe2CH2}NMe]6 (10) was obtained by controlled hydrolysis of 6. Molecular structure of 10 was determined by X-ray structure analysis.  相似文献   

13.
A series of previously unknown asymmetrical fluorinated bis(aryl)bromonium, alkenyl(aryl)bromonium, and alkynyl(aryl)bromonium salts was prepared by reactions of C6F5BrF2 or 4-CF3C6H4BrF2 with aryl group transfer reagents Ar′SiF3 (Ar′ = C6F5, 4-FC6H4, C6H5) or perfluoroorganyl group transfer reagents RF′BF2 (RF = C6F5, trans-CF3CFCF, C3F7C≡C) preferentially in weakly coordinating solvents (CCl3F, CCl2FCClF2, CH2Cl2, CF3CH2CHF2 (PFP), CF3CH2CF2CH3 (PFB)). The presence of the base MeCN and the influence of the adducts RF′BF2·NCMe (RF = C6F5, CF3C≡C) on reactions aside to bromonium salt formation are discussed. Reactions of C6F5BrF2 with AlkF′BF2 in PFP gave mainly C6F5Br and AlkF′F (AlkF′ = C6F13, C6F13CH2CH2), presumably, deriving from the unstable salts [C6F5(AlkF′)Br]Y (Y = [AlkF′BF3]). Prototypical reactivities of selected bromonium salts were investigated with the nucleophile I-and the electrophile H+. [4-CF3C6H4(C6F5)Br][BF4] showed the conversion into 4-CF3C6H4Br and C6F5I when reacted with [Bu4N]I in MeCN. Perfluoroalkynylbromonium salts [CnF2n+1C≡C(RF)Br][BF4] slowly added HF when dissolved in aHF and formed [Z-CnF2n+1CFCH(RF)Br][BF4].  相似文献   

14.
The synthesis of 1-R1-2-R2-8-R3-4,5-dihydro-6H-pyrrolo[1,2,3-d,e]quinoxalin-5-one derivatives (where R1 = CH3, C2H5; R2 = CH3, COOC2H5; R3 = H, CH3, C2H5O, Cl, Br) is described. The physicochemical properties of these derivatives were also studied.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 6, pp. 839–841, June, 1979.  相似文献   

15.
Some new bimetallic carboxylates of tin and germanium with general formula where R1 = m-CH3C6H4, p-CH3C6H4, C6H5, R2 = o-CH3C6H4, p-CH3C6H4, o-CH3OC6H4, C6H5, CH3, have been prepared by the condensation reaction of diethyltin oxide and triarygermyl(substituted)propanoic acid in 1:2 mole ratio, respectively, and characterized by multinuclear (1H, 13C, 119Sn) NMR, 119mSn Mössbauer and IR spectroscopy. The X-ray crystal structure of the ligand I4 [(C6H5)3GeCH(o-CH3OC6H4)CH2COOH] delineate four coordinated germanium atom with a peculiarity of having a molecule of solvent (CHCl3). The chiral center in the synthesized compounds was identified on the basis of 1H NMR data and measurements of angle of rotations.  相似文献   

16.
(Nonafluoro-tert-butyloxy)ethyl tosylate 4 was prepared in 65% yield from nonafluoro-tert-butanol 1 using commercially available reagents. Further reaction of 4 with HNR1R2 (R1 = R2 = H, CH3; R1 = H, R2 = CH3, (CH2)3C8F17, CH2CH2OC(CF3)3) affords the appropriate (CF3)3COCH2CH2NR1R2 amines in 20-69% yields. Improved overall yields of [(CF3)3COCH2CH2]3−nNRn to 1 were obtained by the reaction of (CF3)3CONa 2 and (XCH2CH2)3−nNRn (X = Cl, n = 0, 1, 2, R = CH3; X = CH3SO2O, n = 1, R = CH3SO2) nitrogen mustards and a similar reactive β-substituted ethyl amine. The title amines are mobile colorless liquids and volatile with steam. The bulky fluorous ponytail (CF3)3CO(CH2)2 displays high acidic stability and increases fluorous character almost as much as the classical straight-chain C8F17(CH2)3 ponytail.  相似文献   

17.
The bridging aminocarbyne complexes [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3] (R = Me, 1a; Xyl, 1b; 4-C6H4OMe, 1c; Xyl = 2,6-Me2C6 H3) react with acrylonitrile or methyl acrylate, in the presence of Me3NO and NaH, to give the corresponding μ-allylidene complexes [Fe2{μ-η13- Cα(N(Me)(R))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R = Me, R′ = CN, 3a; R = Xyl, R′ = CN, 3b; R = 4-C6H4OMe, R′ = CN, 3c; R = Me, R′ = CO2Me, 3d; R = 4-C6H4OMe, R′ = CO2Me, 3e). Likewise, 1a reacts with styrene or diethyl maleate, under the same reaction conditions, affording the complexes [Fe2{μ-η13-Cα(NMe2)Cβ(R′)Cγ(H)(R″)}(μ-CO)(CO)(Cp)2] (R′ = H, R″ = C6H5, 3f; R′ = R″ = CO2Et, 3g). The corresponding reactions of [Ru2{μ-CN(Me)(CH2Ph)}(μ-CO)(CO)2(Cp)2][SO3CF3] (1d) with acrylonitrile or methyl acrylate afford the complexes [Ru2{μ-η13-Cα(N(Me)(CH2Ph))Cβ(H)Cγ(H)(R′)}(μ-CO)(CO)(Cp)2] (R′ = CN, 3h; CO2Me, 3i), respectively.The coupling reaction of olefin with the carbyne carbon is regio- and stereospecific, leading to the formation of only one isomer. C-C bond formation occurs selectively between the less substituted alkene carbon and the aminocarbyne, and the Cβ-H, Cγ-H hydrogen atoms are mutually trans.The reactions with acrylonitrile, leading to 3a-c and 3h involve, as intermediate species, the nitrile complexes [M2{μ-CN(Me)(R)}(μ-CO)(CO)(NC-CHCH2)(Cp)2][SO3CF3] (M = Fe, R = Me, 4a; M = Fe, R = Xyl, 4b; M = Fe, R = 4-C6H4OMe, 4c; M = Ru, R = CH2C6H5, 4d).Compounds 3a, 3d and 3f undergo methylation (by CH3SO3CF3) and protonation (by HSO3CF3) at the nitrogen atom, leading to the formation of the cationic complexes [Fe2{μ-η13-Cα(N(Me)3)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 5a; R = CO2Me, 5b; R = C6H5, 5c) and [Fe2{μ-η13-Cα(N(H)(Me)2)Cβ(H)Cγ(H)(R)}(μ-CO)(CO)(Cp)2][SO3CF3] (R = CN, 6a; R = CO2Me, 6b; R = C6H5, 6c), respectively.Complex 3a, adds the fragment [Fe(CO)2(THF)(Cp)]+, through the nitrile functionality of the bridging ligand, leading to the formation of the complex [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CNFe(CO)2Cp)}(μ-CO)(CO)(Cp)2][SO3CF3] (9).In an analogous reaction, 3a and [Fe2{μ-CN(Me)(R)}(μ-CO)(CO)2(Cp)2][SO3CF3], in the presence of Me3NO, are assembled to give the tetrameric species [Fe2{μ-η13-Cα(NMe2)Cβ(H)Cγ(H)(CN[Fe2{μ- CN(Me)(R)}(μ-CO)(CO)(Cp)2])}(μ-CO)(CO)(Cp)2][SO3CF3] (R = Me, 10a; R = Xyl, 10b; R = 4-C6H4OMe, 10c).The molecular structures of 3a and 3b have been determined by X-ray diffraction studies.  相似文献   

18.
Treatment of the mono(salicylaldiminato)titanium complexes {3-But-2-(O)C6H3CHN(Ar)}TiCl3(THF) (Ar = C6H5, 2,4,6-Me3C6H2 or C6F5) with the potassium β-enaminoketonates (C6H5)NC(CH3)C(H)C(R)OK (R = CH3, CF3) yielded the first examples of heteroligated (salicylaldiminato) (β-enaminoketonato)titanium dichloride complexes. The complex {3-But-2-(O)C6H3CHN(C6H5)}{(C6H5)NC(CH3)C(H)C(CH3)O}TiCl2 was structurally characterized by X-ray diffraction and has an orientation with trans-O,O,cis-Cl,Cl, cis-N,N distorted octahedral geometry. These complexes polymerize ethene when activated with MAO; the highest productivity, 5650 kg PE (mol metal)−1 h−1 atm−1, was afforded by {3-But-2-(O)C6H3CHN(C6F5)}{(C6H5)NC(CH3)C(H)C(CF3)O}TiCl2 at 60 °C.  相似文献   

19.
20.
A comparative study of the electrochemical properties, 57Fe NMR and Mössbauer spectroscopic data of compounds [(η5-C5H5)Fe{(η5-C5H4)-C(R1)N-R2}] {R1 = H, R2 = CH2-CH2OH (1a), CH(Me)-CH2OH (1b), CH2C6H5 (1c), C6H4-2Me (1d), C6H4-2SMe (1e) or C6H4-2OH (1f) and R1 = C6H5, R2 = C6H4-2Me (2d)} is reported. The X-ray crystal structure of [(η5-C5H5)Fe{(η5-C5H4)-CHN-C6H4-2OH}] (1f) is also described. Density functional theoretical (DFT) studies of these systems have allowed us to examine the effects induced by the substituents of the “-C(R1)N-R2” moiety or the aryl rings (in 1d-1f) upon the electronic environment of the iron(II) centre.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号