首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Halogenation of 9-dimethylsulfonium-7,8-dicarba-nido-undecaborane [9-SMe2-7,8-C2B9H11] with N-chlorosuccinimide, bromine and iodine gave the expected corresponding halogen derivatives [9-SMe2-11-X-7,8-C2B9H10], where X = Cl (1), Br (2), I (3). In the bromination reaction, [9-SMe2-6-Br-7,8-C2B9H10] (4) was isolated as a minor product being the first example of substitution at a “lower” belt of the 7,8-dicarba-nido-undecaborate cage. The use of excess of bromine resulted in dibromo derivative [9-SMe2-6,11-Br2-7,8-C2B9H9] (5). Structures of the compounds prepared were determined using 11B-11B COSY NMR spectroscopy (for all halogen derivatives) and single crystal X-ray diffraction (for compounds 2, 3, and 5).  相似文献   

2.
[(η5-C5R5)Fe(PMe3)2H] (R = H, Me) can be made in good yields in a simple one-pot reaction between FeCl2, PMe3, C5R5H (R = H, Me) and Na/Hg in thf. Reaction of [(η5-C5H5)Fe(PMe3)2H] with pentaborane(9) gives the known metallaborane [(η5-C5H5)-nido-2-FeB5H10] (1) in improved yield as well as the new metallaboranes [(η-C5H5)-nido-2-FeB5H8{μ-5,6-Fe(η5-C5H5)(PMe3)(μ-6,7-H)}] (2), [(η-C5H5)(PMe3)-arachno-2-FeB3H8] (3), [(η5-C5H5)2-capped-nido-2,3-Fe2B4H8] (4), [(η5-C5H5)-nido-2-FeB4H7(PMe3)] (5) and [(η5-C5H5)-nido-2-FeB5H8(PMe3)] (6). Reaction of [(η5-C5Me5)Fe(PMe3)2H] with pentaborane(9) gives predominantly [(η5-C5Me5)-nido-2-FeB5H10] (7) and [(η5-C5Me5)(PMe3)-arachno-2-FeB3H8] (8). Reaction of [(η5-C5H5)Fe(PMe3)2H] with 2 equiv. of BH3 · thf gives low yields of ferrocene and compound 3. Compound 7 thermally isomerises to the apical isomer [(η5-C5H5)-nido-2-FeB5H10] (9) in low yield. Compounds 1 and 7 deprotonate cleanly in the presence of KH at the unique B-H-B bridge to give [(η5-C5H5)-nido-2-FeB5H9][K+] (10) and [(η5-C5Me5)-nido-2-FeB5H9][K+] (11) respectively, whilst 6 deprotonates more slowly at one of two equivalent B-H-B bridges to give the fluxional anion [(η5-C5H5)-nido-2-FeB5H7(PMe3)] (12).  相似文献   

3.
The preparation of iodo acid [closo-1-CB9H8-1-COOH-10-I] (1) is optimized and scaled from 1 to 40 g of B10H14. The improved preparation of the [arachno-6-CB9H13-6-COOH] (5) uses four times smaller volume and can be run conveniently in up to 40 g scale in a 3-L vessel. The optimized oxidation of 5 to [closo-2-CB9H9-2-COOH] (4) requires less oxidant, 12 times smaller volume, and significantly shorter reaction time. The overall yields of the iodo acid 1 as the [NMe4]+ salt are typically 8-10% (10-12 g) for 40 g of B10H14. The iodo acid 1 was transformed to amino acid 8, then to dinitrogen acid 10, and finally to sulfonium acid 2[3] in overall yield of about 13%. The search for a more efficient phosphine ligand for the Pd-catalyzed amination process was not fruitful. Three routes to the sulfonium acid 2[n] were investigated, and the best yield of about 47% was obtained for Cs2CO3-assisted cycloalkylation. Liquid crystalline ester of acid 2[3] and 4-butoxyphenol was prepared and investigated.  相似文献   

4.
The reaction of [nido-7-SB10H12] with [RhCl(PPh3)3] in the presence of N,N,NN′-tetramethylnaphthalene-1,8-diamine (tmnd) in CH2Cl2 gives twelve-vertex [2,2-(PPh3)2-2-H-closo-2,1-RhSB10H10] (1) and eleven-vertex [8,8-(PPh3)2-nido-8,7-RhSB9H10] (2), as major products, plus the dimeric species [{(PPh3)-closo-RhSB10H10}2] (3) as a minor product. Reaction of 1 with PMe2Ph in CH2Cl2 results in phosphine exchange and hydride substitution, affording the chloro analogue of 1, [2,2-(PMe2Ph)2-2-Cl-closo-2,1-RhSB10H10] (4). By contrast, reaction between [IrCl(PPh3)3] and [nido-7-SB10H12] in CH2Cl2 with tmnd affords only one product, twelve-vertex [2,2-(PPh3)2-2-H-closo-2,1-IrSB10H10] (5). [RhCl25-C5Me5)]2 with [nido-7-SB10H12] under the same conditions gives twelve-vertex [2-(η5-C5Me5)-closo-2,1-RhSB10H10] (6). All the compounds are characterised by NMR spectroscopy, and by mass spectrometry, and the molecular structure of [2,2-(PMe2Ph)2-2-Cl-closo-2,1-RhSB10H10] (4) was established by single-crystal X-ray diffraction analysis. This last rhodathiaborane 4 is fluxional in solution through a process that involves a reversible partial rotation of the {RhCl(PMe2Ph)2} unit above the {SB4} pentagonal face of the {SB10H10} fragment.  相似文献   

5.
Reaction of the ten-vertex [6-Ph-nido-6-CB9H11] anion (1) with two-electron donor ligands L, where L is SMe2, NH2Ph, NC5H5, NC5H4-para-CH2Ph, NC5H4-para-Ph or NC9H7 (where NC9H7 is quinoline) in the presence of {FeCl3(OH2)6} gives the six neutral arachno ten-vertex monocarbaboranes [6-Ph-9-L-arachno-6-CB9H12], compounds 2, 3, 4, 7, 9 and 11, respectively, isolatable in yields of up to 63%. On prolonged treatment with {FeCl3(OH2)6} oxidative cluster closure of the four compounds 4, 7, 9 and 11 that have pyridine-type ligands gives the neutral closo ten-vertex monocarbaboranes [1-Ph-6-L-closo-1-CB9H8], compounds 6, 8, 10 and 12, respectively, in yields of 49-92%. All new species 2, 3, 4, 6, 7, 8, 9, 10, 11 and 12 are characterised by single-crystal X-ray diffraction analysis and NMR spectroscopy. [This paper is an annotated exposition of parts of an oral presentation at the Third Pan-European Meeting of Boron Chemists, EUROBORON-3, Pruhonice, The Czech Republic, September 2004, of which the proceedings constitute this volume of Journal of Organometallic Chemistry.]  相似文献   

6.
Addition of ethynylferrocene to nido-1,2-(CpRuH)2B3H7 (1) at ambient temperature leads to nido-1,2-(CpRu)2(1,5-μ-C{Fc}Me)B3H7 (2, 3) and closo-4-Fc-1,2-(CpRuH)2-4,6-C2B2H3 (4). Compounds 2 and 3 represent a pair of geometric isomers, nido-species in which the regiochemistry of the alkyne reduction conforms to the Markovnikoff rule. Compound 4 is an octahedral structure in which the inserted alkyne is on an open face of the closo cluster.  相似文献   

7.
Half-sandwich [η51N-C5Me4CH2-(2-C5H4N)]MCl3 (M = Ti (4), Zr (5)) and sandwich [η5-C5Me4CH2-(2-C5H4N)][η5-C5Me5]ZrCl2 (6) ring-peralkylated complexes have been prepared and characterized. Evidence of the intramolecular coordination of the side-chain pyridyl group both in 4 and 5 in solutions is provided by NMR spectroscopy data. Crystal structure of an adduct 5-py with one molecule of pyridine has been established by X-ray diffraction analysis.  相似文献   

8.
Ethylene polymerization studies have been carried out with novel precatalysts of the type: [(η5-C13H8)-X(t-BuOC6H12)Me-(η5-C5H4)]ZrCl2 [X=C [1a], Si [2a]], [(η5-C13H8)-XMe2-(η5-(t-BuOC6H12C5H3))] ZrCl2 [X=C [3a], Si [4a]] in the presence of excess methylalumoxane (MAO) to compare their catalytic activity and to delineate the effect of the 6-t-butoxyhexyl functionality on ethylene polymerization. The precatalysts [1a] and [2a] with the bridge functionality showed higher activity in ethylene polymerization than the corresponding complexes [3a] and [4a] which have it on the Cp ring moiety. On the other hand the silyl bridged complexes [2a] and [4a] produced a higher molecular weight polyethylene than the carbon-bridged one, regardless of the location of functional group.  相似文献   

9.
[Cp4Fe4(CO)4] (1) reacts with p-BrC6H4Li and MeOH in sequence to afford the functionalized cluster [Cp3Fe4(CO)4(C5H4-p-C6H4Br)] (2), while the reaction of 2 with n-BuLi and MeOH produces [Cp2Fe4(CO)4(C5H4Bu)(C5H4-p-C6H4Br)] (3). The double cluster [Cp3Fe4(CO)4(C5H4)]2(p-C6H4) (4) has been prepared by treatment of [Cp4Fe4(CO)4] with p-C6H4Li2 and MeOH in sequence. The electrochemistry of 2 and 4, as well as the crystal structure of 4 have been investigated.  相似文献   

10.
The reaction of closo-[B10H10]2− with [PtCl2(PPh3)2] in MeOH at reflux affords the B-methoxy substituted 11-vertex nido-platinaborane compound [(PPh3)2PtB10H10-8-H0.5(OCH3)0.5-10-(OCH3)] (1) and the known species [(PPh3)2PtB10H11-8-(OCH3)] (2) and 1,6-(PPh3)2B10H8 (3). The same reaction under solvothermal condition gives the partially degraded diplatinaborane [(PPh3)2(μ-PPh2)Pt2B9H7-3,9,11-(OMe)3] (4) with a novel nido-Pt2B9H10 skeleton. The new metallaborane compounds have been characterized by spectroscopic methods and single-crystal X-ray analyses. In particular, computational/theoretical chemistry supports the ultimate structural confirmation of 4. The structures of these metallaboranes exhibit interesting intra- and/or intermolecular C-H?O hydrogen bonding interactions.  相似文献   

11.
The chemistry of η3-allyl palladium complexes of the diphosphazane ligands, X2PN(Me)PX2 [X = OC6H5 (1) or OC6H3Me2-2,6 (2)] has been investigated.The reactions of the phenoxy derivative, (PhO)2PN(Me)P(OPh)2 with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = H or Me; R′ = H, R″ = Me) give exclusively the palladium dimer, [Pd2{μ-(PhO)2PN(Me)P(OPh)2}2Cl2] (3); however, the analogous reaction with [Pd(η3-1,3-R′,R″-C3H3)(μ-Cl)]2 (R′ = R″ = Ph) gives the palladium dimer and the allyl palladium complex [Pd(η3-1,3-R′,R″-C3H3)(1)](PF6) (R′ = R″ = Ph) (4). On the other hand, the 2,6-dimethylphenoxy substituted derivative 2 reacts with (allyl) palladium chloro dimers to give stable allyl palladium complexes, [Pd(η3-1,3-R′,R″-C3H3)(2)](PF6) [R′ = R″ = H (5), Me (7) or Ph (8); R′ = H, R″ = Me (6)].Detailed NMR studies reveal that the complexes 6 and 7 exist as a mixture of isomers in solution; the relatively less favourable isomer, anti-[Pd(η3-1-Me-C3H4)(2)](PF6) (6b) and syn/anti-[Pd(η3-1,3-Me2-C3H3)(2)](PF6) (7b) are present to the extent of 25% and 40%, respectively. This result can be explained on the basis of the steric congestion around the donor phosphorus atoms in 2. The structures of four complexes (4, 5, 7a and 8) have been determined by X-ray crystallography; only one isomer is observed in the solid state in each case.  相似文献   

12.
The reaction of a molar excess of closo-[B12H11I][N(n-C4H9)4]2 (1) with tetrakis(triphenylphosphine)palladium (0), Pd(0)L4, yields to the formation of the title monoanionic compound, closo-[1-B12H11P(C6H5)3][N(n-C4H9)4] (2). The structure of 2 was determined by X-ray diffraction analysis performed on a single crystal. The mechanism of formation of 2 is also discussed. We suggested a two-step mechanism for the formation of 2 consisting in a oxidative addition of the palladium complex followed by a reductive elimination involving P(C6H5)3 and assisted by Na2CO3. To our knowledge, this is the first example of monosubstitution of B12 with formation of boron-phosphorus bond.  相似文献   

13.
Novel half-sandwich [C9H5(SiMe3)2]ZrCl3 (3) and sandwich [C9H5(SiMe3)2](C5Me4R)ZrCl2 (R = CH3 (1), CH2CH2NMe2 (2)) complexes were prepared and characterized. The reduction of 2 by Mg in THF lead to (η5-C9H5(SiMe3)2)[η52(C,N)-C5Me4CH2CH2N(Me)CH2]ZrH (7). The structure of 7 was proved by NMR spectroscopy data. Hydrolysis of 2 resulted in the binuclear complex ([C5Me4CH2CH2NMe2]ZrCl2)2O (6). The crystal structures of 1 and 6 were established by X-ray diffraction analysis.  相似文献   

14.
Complex Cp∗PtCl2 (Cp∗ = η-C4Me4) reacts with the carborane anions [7,8-C2B9H11]2− and [9-SMe2-7,8-C2B9H10] giving platinacarboranes Cp∗Pt(η-7,8-C2B9H11) (1) and [Cp∗Pt(η-9-SMe2-7,8-C2B9H10)]+ (2), respectively. Reactions of the [Cp∗Pt]2+ fragment (as a labile nitromethane solvate) with the sandwich compounds Cp∗Fe(η-C5H3Me2BMe) and Cp∗Rh(η5-C4H4BPh) afford the triple-decker cations [Cp∗Pt(μ-η:η-C5H3Me2BMe)FeCp∗]2+ (3) and [Cp∗Pt(μ-η55-C4H4BPh)RhCp∗]2+ (4) with bridging boratabenzene and borole ligands. The structures of 1 and 3(CF3SO3)2 were determined by X-ray diffraction.  相似文献   

15.
The reaction of Li[closo-1-Me-1,2-C2B10H10] with cyclohexene oxide produced closo-1-Me-2-(2′-hydroxycyclohexyl)-1,2-C2B10H10 (1) in 86% yield. Decapitation of (1) with potassium hydroxide in refluxing ethanol gave the corresponding cage-opened potassium salt of the carborane anion, [nido-1-Me-2-(2′-hydroxycyclohexyl)-1,2-C2B9H10] (2) in 82% yield. Deprotonation of (2) with two equivalents of n-butyllithium in THF at −78 °C, followed by its further reaction with anhydrous MCl4 · 2THF (M = Ti, Zr) produced the corresponding d0-half-sandwich metallacarboranes, closo-1-M(Cl)-2-Me-3-(2′-σ-O-cyclohexyl)-η5-2,3-C2B9H9 (3 M = Zr; 4 M = Ti), in 59% and 51% yields, respectively. Reaction of Li[closo-1,2-C2B10H11] with Merrifield’s peptide resin (1%) in refluxing THF gave the ortho-carborane-functionalized polymer (5) in 88% yield. The corresponding closo-1-polystyryl-2-(2′-hydroxycyclohexyl)-1,2-C2B10H10 (6) was produced in 94% yield by refluxing a mixture of the lithium salt of (5) and cyclohexene oxide in THF for 2 days. Compound (6) was decapitated, deprotonated and then reacted with ZrCl4 · 2THF to produce a polymer-supported d0-half-sandwich metallacarborane closo-1-Zr(Cl)-2-polystyryl-3-(2′-σ-O-cyclohexyl)-η5-2,3-C2B9H9 (7) in 41% yield. Compounds (3) and (7), in the presence of MMAO-7 (13% ISOPAR-E), were found to catalyze the polymerization of ethylene and vinyl chloride in toluene to give high molecular weight PE (9.4 × 103 (Mw/Mn = 1.8)) and PVC (2.1 × 103 (Mw/Mn = 1.6)), respectively.  相似文献   

16.
The reactions of ligands 4-C6H5C6H4CHNCH2CH2NMe2 (1a) and 2-C6H5C6H4CHNCH2CH2NMe2 (1b) in front of cis-[PtCl2(dmso)2] or cis-[PtPh2(SMe2)2] produced compounds [PtCl2{4-C6H5C6H4CHNCH2CH2NMe2}] (2aCl) and [PtCl2{2-C6H5C6H4CHNCH2CH2NMe2}] (2bCl) or [PtPh2{4-C6H5C6H4CHNCH2CH2NMe2}] (2aPh) and [PtPh2{2-C6H5C6H4CHNCH2CH2NMe2}] (2bPh). From all these compounds, the corresponding cyclometallated [C,N,N′] platinum(II) compounds 3aCl, 3bCl, 3aPh and 3bPh were obtained although under milder conditions and with higher yields for the phenyl derivatives. The reaction of compounds 3aPh and 3bPh with methyl iodide gave cyclometallated [C,N,N′] platinum(IV) compounds 4aPh and 4bPh of formula [PtMePhI{C6H5C6H3CHNCH2CH2NMe2}]. Compounds 3aCl and 3bCl containing a chloro ligand, although unreactive towards methyl iodide, undergo oxidative addition of chlorine to produce the corresponding platinum(IV) compounds [PtCl3{4-C6H5C6H3CHNCH2CH2NMe2}] (6aCl and 6bCl). All compounds were characterised by NMR spectroscopy and crystal structures of compounds 3bCl and 6bCl are also reported.  相似文献   

17.
Three Pd(II) complexes [Pd2(μ-Cl)2{7,8-(PPh2)2-7,8-C2B9H10}2] · 0.25CH2Cl2 (1), [Pd{7,8-(PPh2)2-7,8-C2B9H10}2] · 4CHCl3 (2) and [PdCl2(1,2-(PPh2)2-1,2-C2B10H10)] (3) have been synthesized by the reactions of 1,2-(PPh2)2-1,2-C2B10H10 with PdCl2 in acetonitrile, cyanophenyl and dichloromethane, respectively. A fourth complex, [PdI2(1,2-(PPh2)2-1,2-C2B10H10)] (4), was obtained by a ligand exchange reaction through the substitution of the Cl of complex 3 with I. All four complexes have been characterized by elemental analysis, FT-IR, 1H and 13C NMR spectroscopy and X-ray structure determination. Single crystal X-ray determination showed that the carborane cage, nido for 1, 2 and closo for 3, 4, was coordinated bidentately to the Pd atom through the two P atoms, and the geometry at the Pd atom was square-planar in all the complexes.  相似文献   

18.
Reaction of [W(PMe2Ph)3H6] with pentaborane(9) gives nido-2-[W(PMe2Ph)3H2B4H8] (1) as well as nido-2-[W(PMe2Ph)3HB5H10] (2). The crystal structure of (2) has been determined. Compound (2) has a novel metallaborane structure containing an edge-bridging {BH3} group between the tungsten atom and one of the basal boron atoms in a “nido-WB4” pyramid. Reaction of [W(PMe3)42-CH2PMe2)H] with pentaborane(9) gives nido-2-[W(PMe3)3H2B4H8] (3) whilst reaction of [Mo(L)4H4] with pentaborane(9) gives nido-2-[Mo(L)3H2B4H8] [L = PMe3 (4), PMe2Ph (5)]. Treatment of [Mo(PMe3)4H4] with excess BH3 · thf gives the known borohydride [Mo(PMe3)4H(η2-BH4)].  相似文献   

19.
Reaction of the potassium salt of N-(diisopropoxyphosphoryl)-p-bromothiobenzamide p-BrC6H4C(S)NHP(O)(OiPr)2 (HL) with Cd(II) cations in freshly dried and distilled EtOH leads exclusively to the complex [Cd(p-BrC6H4C(S)NH2-S)(L-O,S)2] ([Cd(LI)L2]), while the same reaction in H2O leads to the complex [Cd(HL-O)2(L-O,S)2] ([Cd(HL)2L2]). The corresponding reactions with Zn(II) always lead to the complex [Zn(L-O,S)2] ([ZnL2]) regardless of the solvent. The crystal structure of [Cd(HL)2L2].2/3H2O reveals to be a polymorph to the previously reported anhydrous [Cd(HL)2L2].  相似文献   

20.
Reaction of the neutral tricarbaborane nido-7,8,9-C3B8H12 (1) with triethylamine in CH2Cl2 led to quantitative deprotonation and isolation of the corresponding Et3NH+ salt of the [nido-7,8,9-C3B8H11] anion (2). This was converted into PSH+ and Me4N+ salts via metathetic cation exchange. Heating of the solid Me4N+[7,8,9-C3B8H11] in mineral oil at 350 °C for 2 h resulted in thermal rearrangement and isolation of the cage isomeric compound Me4N+[7,8,10-C3B8H11]. Finally, compound 1 was directly complexed via reaction with [CpFe(CO)2]2 (Cp = η5-C5H5) to generate the ferratricarbollide sandwich [1-Cp-closo-1,2,4,10-FeC3B8H11] (4) in 60% yield. The structures of all the generic compounds of tricarbollide chemistry, 1 (PSH+ salt), 2 (MePPh3+salt), and 4, were established unambiguously by an X-ray diffraction analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号