首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
From the reaction of Super Hydride (LiBEt3H) with 6-(4-methoxyphenyl) fulvene (1a), 6-(2-fluoro-4-methoxyphenyl) fulvene (1b), and 6-(4-N,N-dimethylaminophenyl) fulvene (1c) lithiated cyclopentadienide intermediates (2a-c) were synthesised. These intermediates were then transmetallated to zirconium with ZrCl4 to give benzyl-substituted zirconocenes bis-[(4-methoxybenzyl)cyclopentadienyl] zirconium(IV) dichloride (3a), bis-[(2-fluoro-4-methoxybenzyl)cyclopentadienyl] zirconium(IV) dichloride (3b) and bis-[(4-N,N-dimethylaminobenzyl)cyclopentadienyl] zirconium(IV) dichloride (3c). All three zirconocenes were characterised by single crystal X-ray diffraction and preliminary in vitro cell tests were performed with the zirconocene derivatives on the LLC-PK cell line in order to determine their cytotoxicity. Zirconocenes 3b and 3c did not show cytotoxicity up to a concentration of 170 μM, while 3a exhibited an IC50 value of 57 μM against LLC-PK.  相似文献   

2.
From the reaction of 6(2-methoxy-phenyl)fulvene (1a), 6(3-methoxy-phenyl)fulvene (1b), 6(3,4-dimethoxy-phenyl)fulvene (1c) and 6(3,4,5-trimethoxy-phenyl)fulvene (1d) with LiBEt3H, lithiated cyclopentadienide intermediates 2a-d were synthesised. These intermediates were then transmetallated to titanium with TiCl4 to give benzyl substituted titanocenes bis-[(2-methoxy-benzyl)cyclopentadienyl]titanium(IV) dichloride (3a), bis-[(3-methoxy-benzyl)cyclopentadienyl]titanium(IV) dichloride (3b), bis-[(3,4-dimethoxy-benzyl)cyclopentadienyl]titanium(IV) dichloride (3c) and bis-[(3,4,5-trimethoxy-benzyl)cyclopentadienyl]titanium(IV) dichloride (3d). The three titanocenes 3a-c were characterised by single crystal X-ray diffraction, while the structure of the fourth titanocene 3d was elucidated through a DFT calculation. All four titanocenes had their cytotoxicity investigated through preliminary in vitro testing on the LLC-PK (pig kidney epithelial) cell line in order to determine their IC50 values. Titanocenes 3a-d were found to have IC50 values of 97, 159, 88 and 253 μM, respectively. All four titanocene derivatives show significant cytotoxicity improvement when compared to unsubstituted titanocene dichloride.  相似文献   

3.
Methylene-bridged ansa-metallocene complexes bearing substituents on the cyclopentadienyl (Cp) and fluorenyl (Flu) moieties, namely methylene[9-(2,7-di-tert-butyl)fluorenyl(2-(1,3-dimethylcyclopentadienyl))]zirconium dichloride (1a) and its analogue, methylene[(9-(2,7-di-tert-butyl)fluorenyl(2-(1-methyl-3-phenyl)cyclopentadienyl))]zirconium dichloride (2a), have been prepared from (2,7-di-tert-butyl)-9-prop-2-ynyl-9H-fluorene (2). This procedure includes the use of 3-bromo-1-propyne which affords the methylene bridging unit by way of an intermolecular Pauson-Khand reaction in which norbornadiene and a pendant alkyne cyclize to form a ring that later becomes a substituted cyclopentadienyl group. Ethylene-norbornene (E-N) copolymerization was then carried out using these new complexes (1a and 1b) in the presence of methylaluminoxane (MAO) as a cocatalyst; these activities can be compared to that of isopropylene[9-fluorenyl-cyclopentadienyl]zirconium dichloride (3a). The activity of catalyst 1a was comparable to that of 3a but much higher than that of 2a. In addition, 1a shows higher norbornene insertion performance, and gives an E-N copolymer with a higher glass transition temperature (Tg) than 2a under identical conditions; both 1a and 2a give a lower Tg polymer than 3a does.  相似文献   

4.
From the reaction of various 6-pyrrolylfulvenes (3a3d) with Super Hydride (LiBEt3H), lithiated cyclopentadienide intermediates (4a4d) were synthesised. These intermediates were then transmetallated with titanium tetrachloride TiCl4 to yield the pyrrolyl-substituted titanocenes bis-[((1-(4-methoxybenzyl)-pyrrole)2-)cyclopentadienyl]titanium(IV) dichloride (5a), bis-[((1-(4-methoxyphenyl)-pyrrole)2-)cyclopentadienyl]titanium(IV) dichloride (5b), bis-[((2,4-bis(4-methoxyphenyl)-1-methyl-pyrrole)2-)cyclopentadienyl]titanium(IV) dichloride (5c), bis-[((2-(4-methoxyphenyl)-1-methyl-pyrrole)2-)cyclopentadienyl]titanium(IV) dichloride (5d). Titanocene 5b crystallised and was characterised by X-ray crystallography. The four titanocenes 5a5d were tested for their cytotoxicity through MTT-based in vitro tests on CAKI-1 cell lines in order to determine their IC50 values. Titanocenes 5a5d were found to have IC50 values of 440 (±35), 68 (±14), 105 (±30), and 36 (±7) μM.  相似文献   

5.
α-Alkynyl-α-ethoxycarbonyl cyclopentanones 1a-c and cyclohexanones 2a-c were readily synthesized by the reaction of ethyl 2-oxocyclopentanonecarboxylate 6 and ethyl 2-oxocyclohexanonecarboxylate 7 with alkynyllead triacetates 5a-c obtained from lithium acetylides 4a-c and lead tetraacetate. Treatment of 1a-c and 2a-c with 1 N KOH in THF or with n-Bu4N+OEt in EtOH and THF gave the corresponding conjugated allenyl esters 8a-c, 9a-c, 10a-c, and 11a-c in good to excellent yields, respectively.  相似文献   

6.
This paper describes a substantial enhancement of the aminopyridinato ligand stabilized early transition metal chemistry by introducing the sterically very demanding 2,6-dialkylphenyl substituted aminopyridinato ligands derived from (2,6-diisopropylphenyl)-[6-(2,6-dimethylphenyl)-pyridin-2-yl]-amine (1a-H, ApH) and (2,6-diisopropylphenyl)-[6-(2,4,6-triisopropylphenyl)-pyridin-2-yl]- amine (1b-H, ApH). The corresponding bis aminopyridinato zirconium dichloro complexes, [Ap2ZrCl2] (3a) and [Ap2ZrCl2] (3b) and the dimethyl analogues, [Ap2ZrMe2] (4a) and [Ap2ZrMe2] (4b) (Me = methyl) were synthesized, using standard salt metathesis routes. Single-crystal X-ray diffraction was carried out for the dichloro derivatives. Both zirconium metal centers have a distorted octahedral environment with a cis-orientation of the chloride ligands in 3a and a closer to trans-arrangement in 3b. The dimethyl derivatives are proven to be highly active ethylene polymerization catalysts after activation with [R2N(Me)H][B(C6F5)4] (R = C16H33-C18H37). During attempted co-polymerizations of α-olefins (propylene) and ethylene high activity and selectivity for ethylene and nearly no co-monomer incorporation was observed. Increasing the steric bulk of the ligand going from (2,6-dimethylphenyl) to (2,4,6-triisopropylphenyl) substituted pyridines, switches the catalyst system from producing long chain α-olefins to polymerization of ethylene in a living fashion. In contrast to the dimethyl complexes only [Ap2ZrCl2] in the presence of MAO at elevated temperature gave decent polymerization activity. NMR investigations of the reaction of dichloro complexes with 25 equiv. of MAO or AlMe3 at room temperature revealed, that [Ap2ZrCl2] decomposes under ligand transfer to aluminum and formation of [ApAlMe2], while [Ap2ZrCl2] remains almost unreacted under the same conditions. The aminopyridinato dimethyl aluminum complexes, [ApAlMe2] (5a) and [ApAlMe2] (5b) were synthesized independently and structurally characterized. The aluminum complexes 5a and b show no catalytic activity towards ethylene, when “activated” with[R2N(Me)H][B(C6F5)4].  相似文献   

7.
Treatment of the functionalized Schiff base ligands with boronic esters 1a, 1b, 1c and 1d with palladium (II) acetate in toluene gave the polynuclear cyclometallated complexes 2a, 2b, 2c and 2d, respectively, as air-stable solids, with the ligand as a terdentate [C,N,O] moiety after deprotonation of the -OH group. Reaction of 1j with palladium (II) acetate in toluene gave the dinuclear cyclometallated complex 5j. Reaction of the cyclometallated complexes with triphenylphosphine gave the mononuclear species 3a, 3b, 3c, 3d and 6j with cleavage of the polynuclear structure. Treatment of 2c with the diphosphine Ph2PC5H4FeC5H4PPh2 (dppf) in 1:2 molar ratio gave the dinuclear cyclometallated complex 4c as an air-stable solid.Deprotection of the boronic ester can be easily achieved; thus, by stirring the cyclometallated complex 3a in a mixture of acetone/water, 3e is obtained in good yield. Reaction of the tetrameric complex 2a with cis-1,2-cyclopentanediol in chloroform gave complex 2c after a transesterification reaction. Under similar conditions complexes 3a and 3d behaved similarly: with cis-1,2-cyclopentanediol, pinacol or diethanolamine complexes 3c, 3b, 3g and 3f, were obtained. The pinacol derivatives 3b and 3g experiment the Petasis reaction with glyoxylic acid and morpholine in dichloromethane to give complexes 3h, and 3i, respectively.  相似文献   

8.
A novel half-sandwich Zr(IV) complex [η51-N-C5(CH3)4CH2CH2N(CH3)2]ZrCl3 (6) together with zirconocene dichlorides [η5-C5(CH3)4CH2CH2N(CH3)2][η5-C5(CH3)5]ZrCl2 (4) and [η5-C5(CH3)4CH2CH2N(CH3)2]2ZrCl2 (5) have been prepared. Complex 6 has been isolated and characterized in three different forms, namely, as an adduct with THF 6a, an adduct with tetrahydrothiophene 6b, and a solvent-free form 6c. Molecular structures of complexes 4, 6b, and 6c have been established by X-ray diffraction analysis. Complex 6c has been shown to be a monomeric solvent-free half sandwich Zr(IV) complex. The dynamic behavior of complex 6a in a non-solvating medium (an equilibrium between 6a and 6c along with a degenerate interconversion of the Zr-Ccp-CH2-CH2-N(CH3)2-(Zr) pseudo-five-member metallacycle) have been studied by the variable-temperature 1H and 13C{1H} NMR spectroscopy. The activation parameters for the degenerate five-member cycle interconversion have been elucidated.  相似文献   

9.
A series of zirconium complexes (2c, 2d, 2f, 2g, 2h, 2i) containing symmetrical or unsymmetrical β-diketiminate ligands were synthesized by the reaction of ZrCl4 · 2THF with lithium salt of the corresponding ligand in 1:2 molar ratio. X-ray crystal structures reveal that complexes 2d and 2g adopt distorted octahedral geometry around the zirconium center. These complexes showed moderate activities for ethylene polymerization, when methylaluminoxane (MAO) was used as cocatalyst. The steric and electronic effects of the substituents at the phenyl rings had considerable influence on the catalytic activities of the metal complex, as well as the molecular weights and molecular weight distributions (MWD) of produced polymers. Introduction of electron-withdrawing CF3 group to phenyls in the ligand led to a significant increase of catalytic activities, and complex 2f (p-CF3) exhibited the highest catalytic activity of 7.45 × 105 g PE/mol-Zr · h among the investigated complexes. Complexes 2a-d could produce ultra-high molecular weight polyethylenes (UHMWPE) that were hardly dissolvable in decahydronaphthalene or 1,2-dichlorobenzene under the molecular weight measurement conditions. Nevertheless, polyethylenes with broad MWD could be afforded by complexes 2g-i, which was probably due to the introduction of bulky unsymmetrical ligands leading to the formation of multi active species under polymerization conditions. High-temperature 13C NMR data indicate the linear structure of obtained polyethylenes.  相似文献   

10.
The reactions of Ar2TeO (Ar = 4-MeO-C6H4) with 2-, 3- and 4-pyridine carboxylic acids (LH) afforded different organotelluroxane structural types depending on the stoichiometry of the reactants and the conditions of the reaction. Ar2Te(L)OH (1a-1c) are formed in a 1:1 reaction of Ar2TeO with LH in the presence of water. On the other hand a 1:2 reaction under anhydrous conditions leads to the formation of Ar2TeL2 (2a-2c). A 2:2 reaction under anhydrous conditions affords the ditelluroxanes Ar2Te(L)OTe(L)Ar2 (3a-3c) while tritelluroxanes Ar2Te(L)OTeAr2OTe(L)Ar2 (4a-4c) are formed in 3:2 reactions. Interestingly, 3a-3c are formed in the reaction of 2a-2c with Ar2TeO. The former can be hydrolyzed to 1a-1c while the latter upon reaction with Ar2TeO lead to the formation of the tritelluroxanes 4a-4c. Attempts to metalate 2a with PdCl2(MeCN)2 leads to a transfer of the carboxylate ligand to palladium affording Ar2TeCl2 and PdL2. X-ray crystal structures of representative examples of the family of 1, 2 and 3 reveal interesting supramolecular structures and the formation of a novel [TeO]2 structural unit. The latter results from intermolecular secondary Te?O interactions.  相似文献   

11.
3-Anilino-1-propanol derivatives 4a-c, 5a-c, 6a-c containing primary, secondary, and tertiary alcohols and PhNH, PhNMe, and (Ph)2N were prepared and subjected to gas-phase pyrolysis in a static reaction system. The pyrolytic reactions were homogeneous and followed a first-order rate equation. Reactions took place by retro-ene process, with the exception of compounds 5a and 5b. Analysis of the pyrolysate showed the products to be N-substituted aniline and carbonyl compounds. The kinetic results and product analysis of each of the nine investigated 3-amino alcohols are rationalized in terms of a plausible transition state for the elimination pathway.  相似文献   

12.
Dimethylsilyl(2,3,4,5-tetramethylcyclopentadienyl)(3-tert-butyl-5-methyl-2-phenoxy)titanium dichloride (1a), a useful catalyst precursor for olefin copolymerization, was synthesized at high yield starting from allyl-protected phenolic ligand 3a,which was first treated with 2 equiv. of n-BuLi to selectively give the dilithium salt of 3a along with 1-heptene, a coupling product of a protected allyl ether moiety and butyl anion. Addition of TiCl4 to the resulting dilithium salt of 3a in toluene afforded 1a in 50% isolated yield. This methodology could be applied to the preparation of related titanium and zirconoium complexes 1b-1d, 8 with silicone-bridged Cp-phenoxy ligands, whereas the reaction starting from methyl-protected precursor 2a did not produce the zirconium complex 8. Copolymerization of ethylene and 1-hexene with the newly prepared complexes was also investigated.  相似文献   

13.
Bis(p-substituted benzoylmethyl)tellurium dibromides, (p-YC6H4COCH2)2TeBr2, (Y=H (1a), Me (1b), MeO (1c)) can be prepared either by direct insertion of elemental Te across CRf-Br bonds (where CRf refers to α-carbon of a functionalized organic moiety) or by the oxidative addition of bromine to (p-YC6H4COCH2)2Te (Y=H (2a), Me (2b), MeO (2c)). Bis(p-substituted benzoylmethyl)tellurium dichlorides, (p-YC6H4COCH2)2TeCl2 (Y=H (3a), Me (3b), MeO (3c)), are prepared by the reaction of the bis(p-substituted benzoylmethyl)tellurides 2a-c with SO2Cl2, whereas the corresponding diiodides (p-YC6H4COCH2)2TeI2 (Y=H (4a), Me (4b), MeO (4c)) can be obtained by the metathetical reaction of 1a-c with KI, or alternatively, by the oxidative addition of iodine to 2a-c. The reaction of 2a-c with allyl bromide affords the diorganotellurium dibromides 1a-c, rather than the expected triorganotelluronium bromides. Compounds 1-4 were characterized by elemental analyses, IR spectroscopy, 1H, 13C and 125Te NMR spectroscopy (solution and solid-state) and in case of 1c also by X-ray crystallography. (p-MeOC6H4COCH2)2TeBr2 (1c) provides, a rare example, among organotellurium compounds, of a supramolecular architecture, where C-H-O hydrogen bonds appear to be the non-covalent intermolecular associative force that dominates the crystal packing.  相似文献   

14.
Lithium 1,2-bis(trimethylsilyl)hydrazine (1a) reacts with Me3SnCl, Et3SnBr and Bu3SnCl to form bis(trimethylsilyl)(trimethylstannyl)hydrazine (2a), (triethylstannyl)bis(trimethyl silyl)hydrazine (2b) and (tributylstannyl)bis(trimethylsilyl)hydrazine (2c), respectively. Compounds 2a and 2b undergo disproportionation at room temperature to form bis(trimethylsilyl)bis(trimethylstannyl)hydrazine (3a) and bis(triethylstannyl)bis(trimethylsilyl)hydrazine (3b). In contrast, 2c is highly stable and can withstand such a reaction up to 150 °C. The monostannylated products, 2a, 2b and 2c do not get lithiated at NH and instead undergo transmetallation in their reaction with RLi or Li to form lithiumbis(trimethylsilyl)hydrazine (1a).  相似文献   

15.
The synthesis and properties of a novel type of bis(heteroazulen-3-yl)methyl cations, bis(2-oxo-2H-cyclohepta[b]furan-3-yl)methyl cation salt and nitrogen analogues, (9a-c·PF6) and (9a-c·BF4), as well as bis(heteroazulen-3-yl)ketones (12a-d) are studied. The synthetic method was based on a TFA-catalyzed electrophilic aromatic substitution on the heteroazulenes (6a-d) with paraformaldehyde to afford the corresponding disubstituted methane derivatives 7a-d, followed by oxidative hydrogen abstraction with DDQ, and subsequent exchange of the counter-anion by using aq. HPF6 or aq. HBF4. In addition, the reaction of 7a-d with 2.2 equiv. amounts of DDQ afforded carbonyl compounds 12a-d. The delocalization of the positive charge of 9a-c was evaluated by the 1H and 13C NMR spectral data. The thermodynamic stability of cations 9a-c was evaluated to be in the order 9a<9b<9c on the basis of their reduction potentials measured by cyclic voltammetry (CV) and pKR+ values (2.6-10.3) obtained spectrophotometrically. The reduction waves of cations 9a-c were irreversible, suggesting the dimerization of the radical species generated by one-electron reduction. This was demonstrated by the reduction of 9a·BF4 with Zn powder to give dimerized product 14a. In addition, the quenching of 9a·BF4 with MeOH/NaHCO3 gives ether derivative 15a, which is proposed for the precursor for synthesizing tris(heteroazulene)-substituted methyl cations bearing two different heteroazulene-units.  相似文献   

16.
Condensation of mono N-substituted chiral ethylenediamines and pyridine-2-methoxyimidate gives new chiral pyridine imidazolines (1a-c). These react with [RuCl2(mes)]2 (mes = 1,3,5-trimethyl benzene) in the presence of NaSbF6 to give complexes [RuCl(L)(mes)][SbF6] (5a-c) which after treatment with AgSbF6 are enantioselective catalysts for the Diels-Alder reaction of methacrolein and cyclopentadiene. The imidazoline catalysts are less selective than the corresponding oxazoline ones. Compounds 1a, 5b and 5c have been characterised by X-ray crystallography.  相似文献   

17.
Novel condensation reaction of tropone with N-substituted and N,N′-disubstitued barbituric acids in Ac2O afforded 5-(cyclohepta-2′,4′,6′-trienylidene)pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (8a-f) in moderate to good yields. The 13C NMR spectral study of 8a-f revealed that the contribution of zwitterionic resonance structures is less important as compared with that of 8,8-dicyanoheptafulvene. The rotational barriers (ΔG) around the exocyclic double bond of mono-substituted derivatives 8a-c were obtained to be 14.51-15.03 kcal mol−1 by the variable temperature 1H NMR measurements. The electrochemical properties of 8a-f were also studied by CV measurement. Upon treatment with DDQ, 8a-c underwent oxidative cyclization to give two products, 7 and 9-substituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborates (11a-c·BF4 and 12a-c·BF4) in various ratios, while that of disubstituted derivatives 8d-f afforded 7,9-disubstituted cyclohepta[b]pyrimido[5,4-d]furan-8(7H),10(9H)-dionylium tetrafluoroborate (11d-f·BF4) in good yields. Similarly, preparation of known 5-(1′-oxocycloheptatrien-2′-yl)-pyrimidine-2(1H),4(3H),6(5H)-trione derivatives (14a-d) and novel derivatives 14e,f was carried out. Treatment of 14a-c with aq. HBF4/Ac2O afforded two kinds of novel products 11a-c·BF4 and 12a,c·BF4 in various ratios, respectively, while that of 14d-f afforded 11d-f. The product ratios of 11a-c·BF4 and 12a-c·BF4 observed in two kinds of cyclization reactions were rationalized on the basis of MO calculations of model compounds 20a and 21a. The spectroscopic and electrochemical properties of 11a-f·BF4 and 12a-c·BF4 were studied, and structural characterization of 11c·BF4 based on the X-ray crystal analysis and MO calculation was also performed.  相似文献   

18.
The reaction of [Rh(CO)2Cl]2 with 0.5 mol equivalent of the ligands [P(X)(CH2-CH2P(X)Ph2)3](PP3X4) {where X = O(a), S(b) and Se(c)} affords tetranuclear complexes of the type [Rh4(CO)8Cl4(PP3X4)] (1a-1c). The complexes 1a-1c have been characterized by elemental analyses, mass spectrometry, IR and multinuclear NMR spectroscopy, and the ligands b and c are structurally determined by single crystal X-ray diffraction. 1a-1c undergo oxidative addition (OA) reactions with CH3I to generate Rh(III) oxidised products. Kinetic data for the reaction of 1a and 1b with excess CH3I indicate a pseudo first order reaction. The catalytic activity of 1a-1c for the carbonylation of methanol to acetic acid and its ester show a higher Turn Over Frequency (TOF = 1349-1748 h−1) compared to the well-known species [Rh(CO)2I2] (TOF = 1000 h−1) under the similar experimental conditions. However, 1b and 1c exhibit lower TOF than 1a, which may be due to the desulfurization and deselinization of the ligands in the respective complexes under the reaction conditions.  相似文献   

19.
(5Z,5′Z)-3,3′-(1,4-Phenylenebis(methylene)-bis-(5-arylidene-2-thioxothiazolidin-4-one) derivatives (5a-r) have been synthesized by the condensation reaction of 3,3′-(1,4- or 1,3-phenylenebis(methylene))bis(2-thioxothiazolidin-4-ones) (3a,b) with suitably substituted aldehydes (4a-f) or 2-(1H-indol-3-yl)2-oxoacetaldehydes (8a-c) under microwave conditions. The bis(2-thioxothiazolidin-4-ones) were prepared from the corresponding primary alkyl amines (1a,b) and di-(carboxymethyl)-trithiocarbonyl (2). The 2-(1H-indol-3-yl)-2-oxoacetaldehydes (8a-c) were synthesized from the corresponding acid chlorides (7a-c) using HSnBu3.  相似文献   

20.
The reaction of bromoalkanes (R–Br; (3), R=CnH2n+1, n=4 (a), 8 (b), 12 (c),18 (d)) and bromobenzyl derivatives (R′–Br; (4), R′=CH2C6H2(CH3)3-2,4,6 (a); CH2C6H(CH3)4-2,3,5,6 (b); CH2C6(CH3)5 (c)) with 1H-imidazo[4,5-f][1,10]-phenanthroline (IP)(L2) gave the corresponding 1-R-imidazo[4,5-f][1,10]-phenanthroline (IPR)(L3ad) and 1-R′-imidazo[4,5-f][1,10]-phenanthroline(IPR')(L4ac) ligands, respectively. Treatment of L3ad and L4ad with [Ru(p-cymene)Cl2]2 led to the formation of [Ru(p-cymene)(IPR)Cl]Cl (RuL3ad) and [Ru(p-cymene)(IPR′)Cl]Cl (RuL4ac). New ruthenium(II) complexes RuL3ad and RuL4ac were characterized by elemental analysis, FTIR, UV–visible and NMR spectroscopy. In order to understand effects of these changes on the N-substituent of imidazol on IP and how they translate to catalytic activity, these new RuL2, RuL3ad and RuL4ac were applied in the transfer hydrogenation of ketones by 2-propanol in presence of potassium hydroxide. The activities of the catalysts were monitored by NMR and GC analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号