首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ionic and electronic conductivities of the lithium nitride bromides Li6NBr3 and Li1 3N4Br have been studied in the temperature range from 50 to 220°C and 120 to 450°C, respectively. Both compounds are practically pure lithium ion conductors with negligible electronic contribution. Li6NBr3 has an ionic conductivity Ω of 2 × 10-6Ω-1cm-1 at 100°C and an activation enthalpy for σT of 0.46 eV. Li1 3N4Br shows a phase transition at about 230°C. The activation enthalpy for σT is 0.73 eV below and 0.47 eV above this temperature. The conductivities at 150 and 300°C were found to be 3.5 × 10-6 Ω-1cm-1 and 1.4 × 10-3Ω-1cm-1, respectively. The crystal structure is hexagonal at room temperature with a = 7.415 (1)A? and c = 3.865 (1)A?.  相似文献   

2.
The ν4 infrared and Raman bands of CH3Cl were analyzed simultaneously. A direct fit yielded a complete set of constants for CH335Cl, including A0 = 5.20530 ± 0.00010 cm?1 and DK = (8.85 ± 0.13) × 10?5cm?1. For CH337Cl an incomplete set of constants was obtained from the infrared band, and A0 = 5.2182 ± 0.0010 cm?1 was estimated by curve fitting of the Raman spectrum. The resulting equilibrium structure is r(CH) = 1.0854 ± 0.0005 A?, r(CCl) = 1.7760 ± 0.0003 A?, and <(HCH) = 110°.35 ± 0°.05.  相似文献   

3.
Thermoelectric power using reversible silver electrodes and electrical conductivity on the compressed pellets of (Me4N)2Ag13I15, and (Et4N)2Ag13I15 have been measured between room temperature and below 160°C. The results of θ can be expressed by the equations:?θ = 0.115 (103/T)+0.2905VK?1 and ?θ = 0.150 (103/T) + 0.305mV K?1; and those of conductivity by the equations; σ = 28.7 exp (?0.17eV/kT) ohm?1cm?1 and σ = 216.6 exp (?0.24eVkT) ohm?1cm?1; respectively for Me- and Et-electrolytes. The results are discussed and compared with those of previous authors.  相似文献   

4.
In the system Li4SiO4-Li3AsO4, Li4SiO4 forms a short range of solid solutions containing up to 14 to 20% Li3AsO 4, depending on temperature, and γ-Li3AsO4 forms a more extensive range of solid solutions containing up to ≈55% Li4SiO4. The Li4SiO4-Li3AsO4 phase diagram has been determined and is of binary eutectic character. The ac conductivity of polycrystalline samples was measured over the range 0 to at least 300°C for nine different compositions. The two solid solution series have much higher conductivity than the pure end-members; maximum conductivity was observed in the γ-Li3AsO4 solid solutions containing ≈40 to 55% Li4SiO4, with values of ≈2×10?6 Ω?1 cm?1 at 20°C rising to ≈0.02 Ω?1 cm?1 at 300°C. These values are comparable to those found in the system Li4SiO4-Li3PO4. The variation with composition of the Arrhenius prefactor and activation energy has been interpreted in terms of the mechanisms of conduction. Li3AsO4 is a poor conductor essentially because the number of mobile Li+ ions is very small. This number, and hence the conductivity, increases dramatically on forming solid solutions with Li4SiO4, by the creation of interstitial Li+ ions. At ≈40 to 55% Li4SiO4, the number of mobile Li+ ions appears to be optimised. An explanation for the change in activation energy of conduction at ≈290°C in Li4SiO4 and at higher temperatures in Li4SiO4 solid solutions is given in terms of order-disorder of the Li+ ions.  相似文献   

5.
The diffusion constants for C and O adsorbates on Pt(111) surfaces have been calculated with Monte-Carlo/Molecular Dynamics techniques. The diffusion constants are determined to be DC(T)=(3.4 × 10?3e?13156T)cm2s?1 for carbon and DO(T) = (1.5×10?3 e?9089T) cm2 s?1 for oxygen. Using a recently developed diffusion model for surface recombination kinetics an approximate upper bound to the recombination rate constant of C and O on Pt(111) to produce CO(g) is found to be (9.4×10?3 e?9089T) cm2 s?1.  相似文献   

6.
Crystals of Li2NiP2S6 may be prepared by direct combination of stoichiometric amounts of Li2S, phosphorus, nickel and sulphur in a temperature gradient towards 750°C. The structure determined by X-ray powder diffraction is monoclinic C2/m with a = 5.926 A?, b = 10.917 A?, c = 6.718 A?, β = 104.4°, and is based on the NiPS3 layer structure with two Ni atoms substituted by lithium, and with two lithium atoms in the van der Waals gap.  相似文献   

7.
LiFeCl4 and AgFeCl4 are obtained by direct reaction between LiCl or AgCl and FeCl3 at 300°C and 400°C respectively. Both compounds are monoclinic with a = 7.02 (1) A?, b = 6.33 (1) A?, c = 12.72 (4) A?, β = 92° (30') for LiFeCl4 and a = 10.60 (5) A?, b = 6.30 (5) A?, c = 12.34 (10) A?, β = 106° (1) for AgFeCl4.LiFeCl4 is clearly isotypic of LiAlCl4. Magnetic measurements characterize in both cases Fe3+ ions in a high spin tetrahedral situation. LiFeCl4 becomes antiferromagnetic at low temperature (TN?10 K). AgFeCl4 reveals a more complex situation. On contrary to the silver derivative, LiFeCl4 is a good ionic conductor with activation energy of 0.78 eV in the solid state below 105°C, and a sharp increase in the lithium mobility at this temperature.  相似文献   

8.
The ultraviolet absorption spectrum of formyl chloride has been recorded under conditions of modest resolution, 0.75 nm/mm, and long pathlengths, 96 m. The 314- to 269-nm spectrum proved to have well-defined vibrational fine structure and was assigned to the electron promotion, n → π1. A comparison of the spectra of CHClO at 25 and ?78°C with CDClO led to the assignments: pseudo-origin, ν2, ν4, ν5, and ν6; 32754.732775.3, 1153.81092.0, 633.6633.4, 306.3303.1, and 779.5566.5cm?1 for CHClOCDClO, respectively. A fit of the 60, 62, 63, and 65 levels to those generated from a Gaussian-quadratic model potential yielded a barrier height of 1608.8 cm?1 and an out-of-plane angle of 48.6° for the A? state.  相似文献   

9.
The 6,7Li(γ,p) reactions have been investigated for Eγ = 60 MeV. Excitation of residual (1p)?1 and (1s)?1 hole states is evident from the proton spectra measured at ?p = 45°. The data are compared with a theoretical calculation which includes short-range correlations.  相似文献   

10.
(Dimethyldiphenylphosphonium)+(7,7,8,8-tetracyanoquinodimethanide)?2 is monoclinic, space group Cc, with a = 32.01(2), b = 6.56(1), c = 15.72(2)A?, β = 107.4(8)°. The TCNQ's stack plane-to-plane in columns parallel to b with (i) a mean interplanar spacing of 3.28 Å along the conducting chains and (ii) an exocyclic bond to quinonoid ring overlap of adjacent molecules. The conductivity along b, the needle axis, varies as σ = σ0exp (?EakT) where σ300 K = 0.05 S cm?1 and Ea = 0.20 eV (Diethyldiphenylphosphonium)+(7,7,8,8-tetracyanoquinodimethanide)?2 is similarly monoclinic, space group Cc, with a = 31.48(2), b = 6.51(1), c = 15.48(2) A?, β = 104.2(8)°. The conductivity at 300 K and activation energy, both determined along b, are 1–10 S cm?1 and 0.05 eV respectively. There is evidence of a lattice distortion in the dimethyl analogue only.  相似文献   

11.
The rotational structure of the 2B1 (K′ = 0) subbands of NO2 with v2 = 6, 7, 8, and 9 were analyzed by means of the time-gated excitation spectrum. The excitation spectrum monitored at ν2, 2ν2, or 3ν2 fluorescence band was fairly simplified in comparison to its corresponding absorption spectrum. The band origins and rotational constants are evaluated from the observed data: ν0 = 20205.0 cm?1, B′ = 0.374 cm?1 for v2 = 6; ν0 = 21104.4 cm?1, B′ = 0.374 cm?1 for v2 = 7; ν0 = 22001.9 cm?1, B′ = 0.375 cm?1 for v2 = 8ν0 = 22898.0 cm?1, B′ = 0.375 cm?1 for v2 = 9. The value of B extrapolated to v′ = 0 is 0.370 cm?1. This value corresponds to the bond length of 1.19 Å. Fluorescence decays of these excited levels were also studied. Radiative lifetimes obtained by extrapolation to zero pressure from the 1τ – P plots were 25–40 μsec. The short-lived excited levels previously reported by some authors were not found.  相似文献   

12.
The X-ray structure (293 K) of UO2(H2PO4)2·3H2O has been refined (R = 0.062): Mr = 518g, space group: P21/c (Z = 4); a = 10.816(1) A?, b = 13.896(2) A?, c = 7.481(1) A?, β = 105.65(1)°, V = 1082.7(2) A?3; Dc = 3.17 Mg m?3. The structure consists of infinite chains along the (101) axis with U atoms bridged by two H2PO4 groups. The U atom is surrounded by a pentagonal bipyramid of oxygen atoms, one of them being an equatorial water molecule. The cohesion between the chains is ensured by hydrogen bonds involving the two last water molecules. An assignment of IR and Raman bands with isotopic substitution spectra is proposed. A phase transition at 128 K was made evident by DSC and spectroscopy. The room-temperature phase is characterized by a high disorder of the OH bond orientation while in the low-temperature phase H2O and POH species appear well oriented. The conductivity seems to occur by proton transfer and protonic-species rotation at the POH-water molecular interface between the chains. ac conductivity has been determined by means of the complex-impedance method (σRT ~ (3?12) × 10?5 Ω?1cm?1; E ~ 0.20 eV).  相似文献   

13.
Two electrochemical methods - involving the application of a long-time galvanostatic current pulse and a small potentiostatic voltage step to a M/MxSSE cell - are presented. From the overvoltage, respectively current response the chemical diffusion coefficient (DM+) and the thermodynamic factor (? ln a/? ln c) are obtained. The methods have been applied to the cells: Li/1M·LiClO4 in propylenecarbonate/LixTi1.03S2 0.05 < x < 0.95, T = 20°C; and LixCoO2 0.10 < × < 1, T = 20°C. From the application of the current pulse/voltage decay method it followed: DLi+(LixTi1.03S2) = 1?4 × 10?8cm2s?1, with a slight tendency to increase with decreasing x; DLiC(LixCoO2) = 2?40 × 10?9cm2s?1, decreasing with decreasing x. These values are among the highest found for solid state Li+-ion diffusion, and will be closely evaluated and compared with data reported by other workers. The x-dependence of the thermodynamic factor, determined from kinetic data, for LixTi1.03S2 (x = 0.05-0.95) and LixCoO2 (x = 0.60-1.00) is in accordance with a simple thermodynamic model. Unlike for LixTi1.03S2, the thermodynamic factor for LixCoO2, determined from the EMF-x relation, cannot be accounted for by this model. Furthermore, a fast, but crude method to determine the average chemical diffusion coefficient in LixTi1.03S2 and LixCoO2 is discussed.  相似文献   

14.
The multiplet splitting patterns of microwave transitions in the ground state and the first two torsional excited states of CH3OCH3, CD3OCD3, and CD3OCH3 were analyzed in terms of the semirigid rotor models C2vF-C3vT-C3vT and C3F-C3vT-C3vT?. The following nonzero potential coefficients were obtained for CH3OCH3: V30 = V03 = 909.05 ± 0.49 cm?1, V33 = 5.06 ± 1.60 cm?1; for CD3OCH3: V30(CD3) = 897.18 ± 2.41 cm?1, V03(CH3) = 910.45 ± 0.33 cm?1; for CD3OCD3: V30 = V03 = 897.00 cm?1. These results are compared to earlier microwave studies of these molecules.  相似文献   

15.
Polyion complexes between poly(sodium acrylate) 2 and polybrene 3, or poly(2-acrylamino-2-methylpropane sulfonate) 2 and 2 were synthesized. After removing sodium bromide, these polymers were dispersed with LiClO4, and their Li+ conductivities were measured at 80 ~ 200°C. Their ionic conductivities changed from 10-3 to 10-8 S cm-1 at 100 ~ 200°C. These polymers and poly(ethylene oxide) dispersed with LiBF4 were used as solid electrolytes of Li-activated carbon fiber (ACF) batteries and ACF-ACF capacitor.  相似文献   

16.
A high-resolution infrared spectrum of methane-d2 has been measured in the C-D stretching band region (2025–2435 cm?1). Rotational structures of the ν2 and ν8 bands have been assigned by use of the ASSIGN-diagram method, and the c-type Coriolis interaction between ν2 and ν8 has been analyzed. The band origins, ν2 = 2203.22 ± 0.01 cm?1 and ν8 = 2234.70 ± 0.01 cm?1, the rotational constants and the centrifugal distortion constants for the two bands, and the Coriolis coupling constant, ∥;ξ28c∥; = 0.182 ± 0.015 cm?1, have been determined.  相似文献   

17.
Upon oxidation of 5.10-dihydro-5.10-diethylphenazine (E2P) with iodine golden-green lustrous crystals of a compound with stoichiometry E2P.I1.6 were isolated. The compound crystallizes in the tetragonal space group D42 with a = 12.321(2) A? and c = 5.330(2) A?. The E2P and I form interpenetrating incommensurate sublattices along c, with an iodine repeat distance of 9.7 Å. Static susceptibility measurements at room temperature give χg = + 0.994 × 10?6g?1 × cm3. This corresponds to one unpaired electron spin per two formular units. Single-crystal EPR indicates that the paramagnetism is associated with weakly interacting E2P+ cation radicals. The 300K-d.c. conductivity of 3×10?2Ω?1cm?1 and activation energy of 0.17±0.02eV for single crystals is consequently associated with the polyiodide chains, and not with the E2P+ cation radicals.  相似文献   

18.
Pulsed field experiments up to 450 kOe have been performed on FeSiF6.6H2O. We interpret the data: (i) in terms of spin hamiltonian constants: D = 12.3± 0.2 cm-1 (E = 0.54cm-1 being known from EPR data); (ii) in terms of axial-crystal-field parameters: δλ = orbital trigonal splitting/spin-orbit coupling = 15 ± 2; λ = -100 ± 7cm?1. The magnetic axis is found to deviate from the cristallographie c axis by an angle 1° < θ < 2°. The adiabatic cooling obtained during the pulse is discussed.Similar experiments on Fe0.15Zn0.85SiF6.6H2O and Fe0.30Zn0.70SiF6.6H2O single crystals are reported; in both cases we measure Dg = 6.0 ± 0.1cm-1. Using EPR data, we obtain D = 14.3cm-1, λ ~ ?75cm-1, δ ~ 195cm-1; using Mössbauer data, we obtain D = 15.3cm-1, λ ~ ?88cm-1, δ ~ 185cm-1.  相似文献   

19.
The Li+-ion chemical diffusion coefficient in the layered oxide Li0.65CoO2 has been measured to be D? = 5 × 10?12 m2 s?1 by three independent techniques: (1) from the Warburg prefactor, (2) from the transition frequency for semi-infinite to finite diffusion lengths in steady-state ac-impedence measurements and (3) from a modified Tubandt method that uses ac-impedance data to distinguish interfacial and surface-layer resistances from the bulk resistance of the sample. This value and a small increase in D? with (1 ? x) in Li1?xCoO2, 0.45 < (1 ? x) < 0.80, compare favorably with the D? = 5 to 7 × 10-12m2s-1 obtained by Honders for this system with pulse techniques. A qualitative discussion is presented as to why this composition dependence and why D? for this system is a factor of five larger than that for Li+-ion diffusion in LixTiS2.  相似文献   

20.
The bending vibration bands ν4 and ν5 of HCCI were studied. From the observed rotational structure the rotational constant B0 and the centrifugal distortion constant D0 were obtained. The results were B0 = 0.105968(7) cm?1 and D0 = 1.96(7) × 10?8 cm?1 from ν4 and B0 = 0.105948(8) cm?1 and D0 = 1.96(11) × 10?8 cm?1 from ν5. The structure of the hot bands 2ν5(Δ) ← ν5(Π) and 3ν5(φ) ← 2ν5(Δ) was also resolved and hence the values α5 = ?3.033(8) × 10?4 cm?1 and q5 = 9.3(3) × 10?5 cm?1 could be derived. The other most intense hot bands following ν5 could be explained in terms of the Fermi diads ν350 and ν3 + ν5±15±1. Of the numerous hot bands accompanying ν4, only those between different excited states of ν4 could be assigned. Then estimates for α4 and q4 were also obtained. In addition, several vibrational constants were derived.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号