首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Rotationally resolved spectra of the B(2)Π - X(2)Π 0(0)(0) electronic origin bands and 11(1)(1) μ(2)Σ-μ(2)Σ vibronic hot band transitions of both C(6)H and C(6)D have been recorded in direct absorption by cavity ring-down spectroscopy through a supersonically expanding planar plasma. For both origin and hot bands accurate spectroscopic parameters are derived from a precise rotational analysis. The origin band measurements extend earlier work and the 11(1)(1) μ(2)Σ-μ(2)Σ vibronic hot bands are discussed here for the first time. The Renner-Teller effect for the lowest bending mode ν(11) is analyzed, yielding the Renner parameters ε(11), vibrational frequencies ω(11), and the true spin-orbit coupling constants A(SO) for both (2)Π electronic states. From the Renner-Teller analysis and spectral intensity measurements as a function of plasma jet temperature, the excitation energy of the lowest-lying 11(1) μ(2)Σ vibronic state of C(6)H is determined to be (11.0 ± 0.8) cm(-1).  相似文献   

2.
High resolution photoelectron spectra of the n-methylvinoxide anion and its deuterated isotopologue are obtained by slow electron velocity-map imaging. Transitions between the X?(1)A' anion ground electronic state and the radical X?(2)A" and A?(2)A' states are observed. The major features in the spectra are attributed to transitions involving the lower energy cis conformers of the anion and neutral, while the higher energy trans conformers contribute only a single small peak. Franck-Condon simulations of the X?(2)A" ← X?(1)A' and A?(2)A' ← X?(1)A' transitions are performed to assign vibrational structure in the spectrum and to aid in identifying peaks in the cis-n-methylvinoxy X? (2)A" band that occur only through vibronic coupling. The experimental electron affinity and A? state term energy are found to be EA = 1.6106 ± 0.0008 eV and T(0) = 1.167 ± 0.002 eV for cis-n-methylvinoxy.  相似文献   

3.
In this work, the X2B1 and A2A1 electronic states of the phosphino (PH2) free radical have been studied by dispersed fluorescence and ab initio methods. PH2 molecules were produced in a molecular free-jet apparatus by laser vaporizing a silicon rod in the presence of phosphine (PH3) gas diluted in helium. The laser-induced fluorescence, from the excited A2A1 electronic state down to the ground electronic state, was dispersed and analyzed. Ten (upsilon1upsilon2upsilon3) vibrationally excited levels of the ground electronic state, with upsilon1 < or = 2, upsilon2 < or = 6, and upsilon3 = 0, have been observed. Ab initio potential-energy surfaces for the X2B1 and A2A1 electronic states have been calculated at 210 points. These two states correlate with a 2Pi(u) state at linearity and they interact by the Renner-Teller coupling and spin-orbit coupling. Using the ab initio potential-energy surfaces with our RENNER computer program system, the vibronic structure and relative intensities of the A2A1 --> X2B1 emission band system have been calculated in order to corroborate the experimental assignments.  相似文献   

4.
The photoelectron spectrum of the oxyallyl (OXA) radical anion has been measured. The radical anion has been generated in the reaction of the atomic oxygen radical anion (O(?-)) with acetone. Three low-lying electronic states of OXA have been observed in the spectrum. Electronic structure calculations have been performed for the triplet states ((3)B(2) and (3)B(1)) of OXA and the ground doublet state ((2)A(2)) of the radical anion using density functional theory (DFT). Spectral simulations have been carried out for the triplet states based on the results of the DFT calculations. The simulation identifies a vibrational progression of the CCC bending mode of the (3)B(2) state of OXA in the lower electron binding energy (eBE) portion of the spectrum. On top of the (3)B(2) feature, however, the experimental spectrum exhibits additional photoelectron peaks whose angular distribution is distinct from that for the vibronic peaks of the (3)B(2) state. Complete active space self-consistent field (CASSCF) method and second-order perturbation theory based on the CASSCF wave function (CASPT2) have been employed to study the lowest singlet state ((1)A(1)) of OXA. The simulation based on the results of these electronic structure calculations establishes that the overlapping peaks represent the vibrational ground level of the (1)A(1) state and its vibrational progression of the CO stretching mode. The (1)A(1) state is the lowest electronic state of OXA, and the electron affinity (EA) of OXA is 1.940 ± 0.010 eV. The (3)B(2) state is the first excited state with an electronic term energy of 55 ± 2 meV. The widths of the vibronic peaks of the X? (1)A(1) state are much broader than those of the a? (3)B(2) state, implying that the (1)A(1) state is indeed a transition state. The CASSCF and CASPT2 calculations suggest that the (1)A(1) state is at a potential maximum along the nuclear coordinate representing disrotatory motion of the two methylene groups, which leads to three-membered-ring formation, i.e., cyclopropanone. The simulation of b? (3)B(1) OXA reproduces the higher eBE portion of the spectrum very well. The term energy of the (3)B(1) state is 0.883 ± 0.012 eV. Photoelectron spectroscopic measurements have also been conducted for the other ion products of the O(?-) reaction with acetone. The photoelectron imaging spectrum of the acetylcarbene (AC) radical anion exhibits a broad, structureless feature, which is assigned to the X? (3)A' state of AC. The ground ((2)A') and first excited ((2)A') states of the 1-methylvinoxy (1-MVO) radical have been observed in the photoelectron spectrum of the 1-MVO ion, and their vibronic structure has been analyzed.  相似文献   

5.
The photoelectron spectrum of F2O pertaining to ionizations to the ground (X2B1) and low-lying excited electronic states (A2B2, B2A1, and C2A2) of F2O+ is investigated theoretically. The near equilibrium potential energy surfaces of the ground electronic state (X2B1) of F2O and the mentioned ground and excited electronic states of F2O+ reported by Wang et al. ( J. Chem. Phys. 2001, 114, 10682) for the C2v configuration are extended for the Cs geometry assuming a harmonic vibration along the asymmetric stretching mode. The vibronic interactions between the A2B2 and B2A1 electronic states of F2O+ are treated within a linear coupling approach, and the strength of the vibronic coupling parameter is calculated by an ab initio method. The nuclear dynamics is simulated by both time-independent quantum mechanical and time-dependent wave packet approaches. Although the first photoelectron band exhibits resolved vibrational progression along the symmetric stretching mode, the second one is highly overlapping. The latter is attributed to the nonadiabatic interactions among the energetically close A2B2, B2A1, and C2A2 electronic states of F2O+. The theoretical findings are in good accord with the available experimental results.  相似文献   

6.
Photo-induced electron detachment spectroscopy of anionic boron clusters, B(4)(-) and B(5)(-), is theoretically investigated by performing electronic structure calculations and nuclear dynamics simulations. While the electronic potential energy surfaces (X(1)A(g), ?(3)B(2u), b(3)B(1u), ?(1)B(2u), c(3)B(2g), and B(1)B(2g) of neutral B(4) and X(2)B(2), ?(2)A(1), B(2)B(2), C(2)A(1), D(2)B(1), and E(2)A(1) of neutral B(5)) and their coupling surfaces are constructed in this paper, the details of the nuclear dynamics on these electronic states are presented in Paper II. Electronic structure calculations are carried out at the complete active space self-consistent field-multi-reference configuration interaction level of theory employing the correlation consistent polarized valance triple zeta basis set. Using the calculated electronic structure data suitable vibronic Hamiltonians are constructed utilizing a diabatic electronic basis and displacement coordinates of the normal vibrational modes. The theoretical results are discussed in relation to those recorded in recent experiments.  相似文献   

7.
Electronic spectra of LiNH(3) and its partially and fully deuterated analogues are reported for the first time. The spectra have been recorded in the near-infrared and are consistent with two electronic transitions in close proximity, the ?(2)E-X(2)A(1) and B(2)A(1)-X(2)A(1) systems. Vibrational structure is seen in both systems, with the Li-N-H bending vibration (ν(6)) dominant in the ?(2)E-X(2)A(1) system and the Li-N stretch (ν(3)) in the B(2)A(1)-X(2)A(1) system. The prominence of the 6(0)(1) band in the ?(2)E-X(2)A(1) spectrum is attributed to Herzberg-Teller coupling. The proximity of the B(2)A(1) state, which lies a little more than 200 cm(-1) above the ?(2)E state, is likely to be the primary contributor to this strong vibronic coupling.  相似文献   

8.
Radiative lifetimes from the first electronically excited state of the amidogen free radical, NH(2)(A?(2)A(1)), are reported for rotational states in selected vibrational levels ν(2)' using laser-induced fluorescence. Thermal collision of argon, Ar(?)((3)P(0), (3)P(2)) metastable atoms in a microwave discharge-flow system with ammonia (NH(3)) molecules produced ground state NH(2)(X?(2)B(1)). The radiative lifetimes for the deactivation of NH(2)(A?(2)A(1)) were determined by measuring the decay profiles of NH(2)(A?(2)A(1)?→?X?(2)B(1)). In addition to the Fermi resonances with the ground state that lengthen the radiative lifetimes, a systematic increase in the radiative lifetimes with rotational quantum number was observed. Furthermore, the average radiative lifetimes of the (0, 9, 0) Γ, τ(1) = 18.65 ± 0.47 μs and (0, 8, 0) Φ, τ(2) = 23.72 ± 0.65 μs levels were much longer than those of the (0, 9, 0) Σ, τ(3) = 10.62 ± 0.47 μs, and (0, 8, 0) Π, τ(4) = 13.55 ± 0.55 μs states suggesting increased mixing of the first electronic excited and the ground states.  相似文献   

9.
The origin band in the b?(1)B(1)-a?(1)A(1) transition of CH(2) near 1.2 μm has been recorded at Doppler-limited resolution using diode laser transient absorption spectroscopy. The assignments of rotational transitions terminating in upper state levels with K(a) = 0 and 1, were confirmed by ground state combination differences and extensive optical-optical double resonance experiments. The assigned lines are embedded in a surprisingly dense spectral region, which includes a strong hot band, b?(0,1,0) K(a) = 0 - a?(0,1,0) K(a) = 1 sub-band lines, with combination or overtone transitions in the a?(1)A(1) state likely responsible for the majority of unassigned transitions in this region. From measured line intensities and an estimate of the concentration of CH(2) in the sample, we find the transition moment square for the 0(00) ← 1(10) transition in the b?(1)B(1)(0,0,0)(0)-a?(1)A(1)(0,0,0)(1) sub-band is 0.005(1) D(2). Prominent b?(1)B(1)(0,1,0)(0)-a?(1)A(1)(0,1,0)(1) hot band lines were observed in the same spectral region. Comparison of the intensities of corresponding rotational transitions in the two bands suggests the hot band has an intrinsic strength approximately 28 times larger than the origin band. Perturbations of the excited state K(a) = 0 and 1 levels are observed and discussed. The new measurements will lead to improved future theoretical modeling and calculations of the Renner-Teller effect between the a? and b? states in CH(2).  相似文献   

10.
The previously unknown electronic spectrum of the H(2)PO free radical has been identified in the 407-337 nm region using a combination of laser-induced fluorescence and single vibronic level emission spectroscopy. High level ab initio predictions of the properties of the ground and first two excited doublet states were used to identify the spectral region in which to search for the electronic transition and were used to aid in the analysis of the data. The band system is assigned as the B?(2)A(')-X?(2)A(') electronic transition which involves promotion of an electron from the π to the π? molecular orbital. The excited state r(0) molecular structure was determined by rotational analysis of high resolution LIF spectra to be r(PO) = 1.6710(2) ?, r(PH) = 1.4280(6) ?, θ(HPO) = 105.68(7)°, θ(HPH) = 93.3(2)°, and the out-of-plane angle = 66.8(2)°. The structural changes on electronic excitation, which include substantial increases in the PO bond length and out-of-plane angle, are as expected based on molecular orbital theory and our previous studies of the isoelectronic H(2)AsO, Cl(2)PS, and F(2)PS free radicals.  相似文献   

11.
Photodissociation of CH(3)I(+) in the ground vibronic state generated by mass-analyzed threshold ionization resulted in a superb spectrum for the first excited electronic state (A (2)A(1)) with hardly any spurious peak. Rotational structure in the spectrum could be resolved by using a single mode laser. This structure for one vibronic band, 2(1)3(1)6(1), was analyzed with the assumption of Hund's case (a) scheme both in the ground and excited electronic states.  相似文献   

12.
NO2的光解研究不仅在大气化学等领域有着重要意义,而且在单分子解离模型的建立等分子反应动力学理论研究上也有着重要的价值.因此,它一直被不同的实验方法进行着深入的研究.NO2的解离极限波长是398nm.由干室温下NO2振、转动能的能量贡献,在长干解高限的404.7。仍有多达3  相似文献   

13.
The photon-excited NO2 at 308 nm has been investigated by Time-Resolved FTIR spectroscopy. The IR fluorescence from highly excited NO2(X2 A1) in ν1 vibrational mode has been observed. These excited states are resulted from the strong vibronic mixing of electronic excited A2 B2/B2 B1 states with the ground X2 A1 state. It is considered that symmetric stretching ν1 mode is reserved from the photolysis because its vibrational style is unsuitable for dissociation.  相似文献   

14.
The effect of vibronic coupling on structure and spectroscopy is investigated in the excited cationic states of ethylene. It is found from equation of motion coupled cluster singles and doubles method for ionization potential electronic structure calculations in a triple-zeta plus double polarization basis set that ethylene in its third (B (2)A(g)) and fourth (C (2)B(2u)) ionized states does not have a stable minimum-energy geometry. The potential-energy surfaces of these states are energetically distinct and well separated at the ground-state geometry of ethylene, but in a geometry optimization as the structure of the ion relaxes, these surfaces end up in conical intersections and finally in the stable equilibrium geometry of the second ionized state (A (2)B(3g)). The topology of the potential-energy surfaces can be clearly understood using a vibronic model Hamiltonian. Furthermore, by diagonalizing this model Hamiltonian, the photoelectron spectrum of ethylene corresponding to the second, third, and fourth ionized states (12-18 eV) is simulated. Spectra from vibronic simulations including up to quartic coupling constants and using various normal-mode basis sets are compared to those from vertical Franck-Condon simulations to understand the importance of vibronic coupling and nonadiabatic effects and to examine the influence of individual normal modes on the spectrum.  相似文献   

15.
A detailed photophysical characterization of a couple of new perylene imide derivatives, a carboxylic trisimide PIx, and an asymmetrically substituted carboxylic bisimide PIa is presented. PIx and PIa have the lowest singlet excited state just below 2.6 eV. The dyes are remarkably fluorescent (?(f) = 0.37 ± 0.03 for PIa and ?(f) = 0.58 ± 0.04 for PIx in toluene), but they also display an efficient intersystem crossing. This leads to typical excited triplet photophysics/photochemistry, with intense triplet state absorption spectra and efficient singlet oxygen ((1)Δ(g)) photosensitization (?(Δ) = 0.68 ± 0.02 for PIa and 0.44 ± 0.02 for PIx in toluene). On the basis of the measured ?(Δ), a ?(isc) of 0.65 ± 0.02 for PIa and 0.43 ± 0.02 for PIx in toluene is derived. PIx reduces at -0.58 eV vs SCE, almost similarly to the corresponding symmetrically substituted perylene bisimide PI0, but unlike the latter, it has the first oxidation potential above +1.9 V. PIa is more electron rich and displays a more difficult first reduction at -0.95 V with a more facile oxidation at +1.75 V, similar to that of the parent PI0. The absorption spectra of the excited singlet and triplet states and that of electrochemically generated monoanions are reported.  相似文献   

16.
The electronic spectrum of Ni?(H?O) has been measured from 16200 to 18000 cm?1 using photofragment spectroscopy. Transitions to two excited electronic states are observed; they are sufficiently long-lived that the spectrum is vibrationally and partially rotationally resolved. An extended progression in the metal-ligand stretch is observed, and the absolute vibrational quantum numbering is assigned by comparing isotopic shifts between ??Ni?(H?O) and ??Ni?(H?O). Time-dependent density functional calculations aid in assigning the spectrum. Two electronic transitions are observed, from the 2A? ground state (which correlates to the 2D, 3d? ground state of Ni?) to the 32A? and 22A? excited states. These states are nearly degenerate and correlate to the 2F, 3d?4s excited state of Ni?. Both transitions are quite weak, but surprisingly, the transition to the 2A? state is stronger, although it is symmetry-forbidden. The 3d?4s states of Ni? interact less strongly with water than does the ground state; therefore, the excited states observed are less tightly bound and have a longer metal-ligand bond than the ground state. Calculations at the CCSD(T)/aug-cc-pVTZ level predict that binding to Ni? increases the H-O-H angle in water from 104.2 to 107.5° as the metal removes electron density from the oxygen lone pairs. The photodissociation spectrum shows well-resolved rotational structure due to rotation about the Ni-O axis. This permits determination of the spin rotation constants ε(αα)' = -12 cm?1 and ε(αα)' = -3 cm?1 and the excited state rotational constant A' = 14.5 cm?1. This implies a H-O-H angle of 104 ± 1° in the 22A? excited state. The O-H stretching frequencies of the ground state of Ni?(H?O) were measured by combining IR excitation with visible photodissociation in a double resonance experiment. The O-H symmetric stretch is ν?' = 3616.5 cm?1; the antisymmetric stretch is ν?' = 3688 cm?1. These values are 40 and 68 cm?1 lower, respectively, than those in bare H?O.  相似文献   

17.
Photodetachment spectroscopy of phenide anion C6H5- is theoretically studied with the aid of electronic structure calculations and quantum dynamical simulations of nuclear motion. The theoretical results are compared with the available experimental data. The vibronic structure of the first, second, and third photoelectron bands associated with the ground X 2A1 and low-lying excited A 2B1 and B 2A2 electronic states of the phenyl radical C6H5 is examined at length. While the X state of the radical is energetically well separated and its interaction is found to be rather weak with the rest, the A and B electronic states are found to be only approximately 0.57 eV apart in energy at the vertical configuration. Low-energy conical intersections between the latter two states are discovered and their impact on the nuclear dynamics underlying the second and third photoelectron bands is delineated. The nuclear dynamics in the X state solely proceeds through the adiabatic path and the theoretically calculated vibrational level structure of this state compares well with the experimental result. Two Condon active totally symmetric (a1) vibrational modes of ring deformation type form the most dominant progression in the first photoelectron band. The existing ambiguity in the assignment of these two vibrational modes is resolved here. The A-B conical intersections drive the nuclear dynamics via nonadiabatic paths, and as a result the second and third photoelectron bands overlap and particularly the third band due to the B state of C6H5 becomes highly diffused and structureless. Experimental photodetachment spectroscopy results are not available for these bands. However, the second band has been detected in electronic absorption spectroscopy measurements. The present theoretical results are compared with these absorption spectroscopy data to establish the nonadiabatic interactions between the A and B electronic states of C6H5.  相似文献   

18.
In a discharged supersonic jet of acetonitrile and carbon disulfide, we have for the first time observed an electronic transition of the NC(3)S radical using laser-induced fluorescence (LIF) spectroscopy. A progression originating from the C-S stretching mode of the upper electronic state appears in the excitation spectrum. Each band of the progression has a polyad structure due to anharmonic resonances with even overtones of bending modes. Rotationally resolved spectra have been observed by high-resolution laser scans, and the electronic transition is assigned to A 2Pii-X 2Pii. For the vibronic origin band, the position and the effective rotational constant of the upper level have been determined to be 21 553.874(1) and 0.046 689(4) cm(-1), respectively. The dispersed fluorescence spectrum from the zero vibrational level of A 2Pi3/2 has also been observed; its vibrational structure is similar to that of the LIF excitation spectrum, showing a prominent C-S stretching progression with polyad structures. The vibrational frequencies of the C-S stretching mode in the ground and excited electronic states are determined to be 550 and 520 cm(-1), respectively. Fluorescence decay profiles have been measured for several vibronic levels of the A state.  相似文献   

19.
Two-photon, two-color double-resonance ionization spectroscopy combining synchrotron vacuum ultraviolet radiation with a tunable near-infrared (NIR) laser has been used to investigate gerade symmetry states of the nitrogen molecule. The rotationally resolved spectrum of an autoionizing (1)Σ(g)(-) state has been excited via the intermediate c(4) (v = 0) (1)Π(u) Rydberg state. We present the analysis of the band located at T(v) = 10,800.7 ± 2 cm(-1) with respect to the intermediate state, 126,366 ± 11 cm(-1) with respect to the ground state, approximately 700 cm(-1) above the first ionization threshold. From the analysis a rotational constant of B(v) = 1.700 ± 0.005 cm(-1) has been determined for this band. Making use of the pulsed structure of the two radiation beams, lifetimes of several rotational levels of the intermediate state have been measured. We also report rotationally-averaged fluorescence lifetimes (300 K) of several excited electronic states accessible from the ground state by absorption of one photon in the range of 13.85-14.9 eV. The averaged lifetimes of the c(4) (0) and c(5) (0) states are 5.6 and 4.4 ns, respectively, while the b(') (12), c(')(4) (4, 5, 6), and c(')(5) (0) states all have lifetimes in the range of hundreds of picoseconds.  相似文献   

20.
The excitation spectra and molecular dynamics of furan associated with its low-lying excited singlet states 1A2(3s), 1B2(V), 1A1(V'), and 1B1(3p) are investigated using an ab initio quantum-dynamical approach. The ab initio results of our previous work [J. Chem. Phys. 119, 737 (2003)] on the potential energy surfaces (PES) of these states indicate that they are vibronically coupled with each other and subject to conical intersections. This should give rise to complex nonadiabatic nuclear dynamics. In the present work the dynamical problem is treated using adequate vibronic coupling models accounting for up to four coupled PES and thirteen vibrational degrees of freedom. The calculations were performed using the multiconfiguration time-dependent Hartree method for wave-packet propagation. It is found that in the low-energy region the nuclear dynamics of furan is governed mainly by vibronic coupling of the 1A2(3s) and 1B2(V) states, involving also the 1A1(V') state. These interactions are responsible for the ultrafast internal conversion from the 1B2(V) state, characterized by a transfer of the electronic population to the 1A2(3s) state on a time scale of approximately 25 fs. The calculated photoabsorption spectrum of furan is in good qualitative agreement with experimental data. Some assignments of the measured spectrum are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号