首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
It is known that the nonlinear system of equations of plane steady isentropic potential gas flow can be linearized and transformed to a single equivalent linear differential equation of second order. For the case of a perfect gas this equation has the form [1]
$$\begin{gathered} \frac{{1 - \tau ^2 }}{{\tau ^2 (1 - \alpha \tau ^2 )}} \frac{{\partial ^2 \Phi }}{{\partial \theta ^2 }} + \frac{{\partial ^2 \Phi }}{{\partial \tau ^2 }} + \frac{{\tau (1 - \tau ^2 )}}{{\tau ^2 (1 - \alpha \tau ^2 )}} \frac{{\partial \Phi }}{{\partial \tau }} = 0, \hfill \\ (\tau = w/c_k , w = \sqrt {u^2 + \upsilon ^2 } , \alpha = (\gamma - 1)/(\gamma + 1); \gamma = c_p /c_\upsilon ). (0.1) \hfill \\ \end{gathered} $$  相似文献   

2.
In order to capture the complexities of two-phase flow in heterogeneous porous media, we have used the method of large-scale averaging and spatially periodic models of the local heterogeneities. The analysis leads to the large-scale form of the momentum equations for the two immiscible fluids, a theoretical representation for the large-scale permeability tensor, and a dynamic, large-scale capillary pressure. The prediction of the permeability tensor and the dynamic capillary pressure requires the solution of a large-scale closure problem. In our initial study (Quintard and Whitaker, 1988), the solution to the closure problem was restricted to the quasi-steady condition and small spatial gradients. In this work, we have relaxed the constraint of small spatial gradients and developed a dynamic solution to the closure problem that takes into account some, but not all, of the transient effects that occur at the closure level. The analysis leads to continuity and momentum equations for the-phase that are given by
  相似文献   

3.
We establish a general weak* lower semicontinuity result in the space BD(Ω) of functions of bounded deformation for functionals of the form
$ {ll} \,\mathcal{F}(u) := &\int_\Omega f (x, \mathcal{E} u) \;{\rm d} x + \int_\Omega f^\infty \left( x, \frac{{\rm d} E^s u}{{\rm d} |{E^s u}|} \right) \;{\rm d} |{E^s u}| \\ &+ \int_{\partial \Omega} f^\infty \left( x, u|_{\partial \Omega} \odot n_\Omega \right) \;{\rm d} \mathcal{H}^{d-1}, \qquad u \in {\rm BD}(\Omega). $ \begin{array}{ll} \,\mathcal{F}(u) := &\int_\Omega f (x, \mathcal{E} u) \;{\rm d} x + \int_\Omega f^\infty \left( x, \frac{{\rm d} E^s u}{{\rm d} |{E^s u}|} \right) \;{\rm d} |{E^s u}| \\ &+ \int_{\partial \Omega} f^\infty \left( x, u|_{\partial \Omega} \odot n_\Omega \right) \;{\rm d} \mathcal{H}^{d-1}, \qquad u \in {\rm BD}(\Omega). \end{array}  相似文献   

4.
Let u, p be a weak solution of the stationary Navier-Stokes equations in a bounded domain N, 5N . If u, p satisfy the additional conditions
  相似文献   

5.
We consider as in Parts I and II a family of linearly elastic shells of thickness 2?, all having the same middle surfaceS=?(?)?R 3, whereω?R 2 is a bounded and connected open set with a Lipschitz-continuous boundary, and? ∈ ?3 (?;R 3). The shells are clamped on a portion of their lateral face, whose middle line is?(γ 0), whereγ 0 is a portion of withlength γ 0>0. For all?>0, let $\zeta _i^\varepsilon$ denote the covariant components of the displacement $u_i^\varepsilon g^{i,\varepsilon }$ of the points of the shell, obtained by solving the three-dimensional problem; let $\zeta _i^\varepsilon$ denote the covariant components of the displacement $\zeta _i^\varepsilon$ a i of the points of the middle surfaceS, obtained by solving the two-dimensional model ofW.T. Koiter, which consists in finding $$\zeta ^\varepsilon = \left( {\zeta _i^\varepsilon } \right) \in V_K (\omega ) = \left\{ {\eta = (\eta _\iota ) \in {\rm H}^1 (\omega ) \times H^1 (\omega ) \times H^2 (\omega ); \eta _i = \partial _v \eta _3 = 0 on \gamma _0 } \right\}$$ such that $$\begin{gathered} \varepsilon \mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \gamma _{\sigma \tau } (\zeta ^\varepsilon )\gamma _{\alpha \beta } (\eta )\sqrt a dy + \frac{{\varepsilon ^3 }}{3} \mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \rho _{\sigma \tau } (\zeta ^\varepsilon )\rho _{\alpha \beta } (\eta )\sqrt a dy \hfill \\ = \mathop \smallint \limits_\omega p^{i,\varepsilon } \eta _i \sqrt a dy for all \eta = (\eta _i ) \in V_K (\omega ), \hfill \\ \end{gathered}$$ where $a^{\alpha \beta \sigma \tau }$ are the components of the two-dimensional elasticity tensor ofS, $\gamma _{\alpha \beta }$ (η) and $\rho _{\alpha \beta }$ (η) are the components of the linearized change of metric and change of curvature tensors ofS, and $p^{i,\varepsilon }$ are the components of the resultant of the applied forces. Under the same assumptions as in Part I, we show that the fields $\frac{1}{{2_\varepsilon }}\smallint _{ - \varepsilon }^\varepsilon u_i^\varepsilon g^{i,\varepsilon } dx_3^\varepsilon$ and $\zeta _i^\varepsilon$ a i , both defined on the surfaceS, have the same principal part as? → 0, inH 1 (ω) for the tangential components, and inL 2(ω) for the normal component; under the same assumptions as in Part II, we show that the same fields again have the same principal part as? → 0, inH 1 (ω) for all their components. For “membrane” and “flexural” shells, the two-dimensional model ofW.T. Koiter is therefore justified.  相似文献   

6.
We are concerned with the regularity properties for all times of the equation $$\frac{{\partial U}}{{\partial t}}\left( {t,x} \right) = - \frac{{\partial ^2 }}{{\partial x^2 }}\left[ {U\left( {t,{\text{0}}} \right) - U\left( {t,x} \right)} \right]^2 - v\left( { - \frac{{\partial ^2 }}{{\partial x^2 }}} \right)^\alpha U\left( {t,x} \right)$$ which arises, with α=1, in the theory of turbulence. Here U(t,·) is of positive type and the dissipativity α is a non-negative real number. It is shown that for arbitrary ν≧0 and ?>0, there exists a global solution in \(L^\infty [0,\infty ;H^{\tfrac{3}{2} - \varepsilon } (\mathbb{R})]\) . If ν>0 and \(\alpha > \alpha _{cr} = \tfrac{1}{2}\) , smoothness of initial data persists indefinitely. If 0≦α<α cr, there exist positive constants ν1(α) and ν2(α), depending on the data, such that global regularity persists for ν>ν1(α), whereas, for 0≦ν<ν2(α), the second spatial derivative at the origin blows up after a finite time. It is conjectured that with a suitable choice of α cr, similar results hold for the Navier-Stokes equation.  相似文献   

7.
The work presented is a wind tunnel study of the near wake region behind a hemisphere immersed in three different turbulent boundary layers. In particular, the effect of different boundary layer profiles on the generation and distribution of near wake vorticity and on the mean recirculation region is examined. Visualization of the flow around a hemisphere has been undertaken, using models in a water channel, in order to obtain qualitative information concerning the wake structure.List of symbols C p pressure coefficient, - D diameter of hemisphere - n vortex shedding frequency - p pressure on model surface - p 0 static pressure - Re Reynolds number, - St Strouhal number, - U, V, W local mean velocity components - mean freestream velocity inX direction - U * shear velocity, - u, v, w velocity fluctuations inX, Y andZ directions - X Cartesian coordinate in longitudinal direction - Y Cartesian coordinate in lateral direction - Z Cartesian coordinate in direction perpendicular to the wall - it* boundary layer displacement thickness, - diameter of model surface roughness - elevation angleI - O boundary layer momentum thickness, - w wall shearing stress - dynamic viscosity of fluid - density of fluid - streamfunction - x longitudinal component of vorticity, - y lateral component of vorticity, - z vertical component of vorticity, This paper was presented at the Ninth symposium on turbulence, University of Missouri-Rolla, October 1–3, 1984  相似文献   

8.
The quasilinear parabolic equation $$\frac{{\partial u}}{{\partial t}} = \frac{\partial }{{\partial x}}\left( {\left| {\frac{{\partial u^k }}{{\partial x}}} \right|^{n - 1} \frac{{\partial u^k }}{{\partial x}}} \right) - \gamma u^m , k,\gamma > 0, m \geqslant 0, kn > 1$$ can be regarded as the generalized form of many well-known transport equations with transport coefficients that depend on the transported quantity. For example, the case n = 1 corresponds to heat transport in a medium with thermal conductivity and sinks which depend on the temperature in accordance with a power law [1, 2]; the case k = m = 1 describes the flow of a conducting non-Newtonian fluid in a transverse magnetic field [3]; the case k = 2, m = 0 corresponds to the magnetohydrodynamic flow of the same fluid in a transverse magnetic field in a laminar boundary layer [4]. In the general case, Eq. (0.1) describes turbulent flow in a porous medium with nonlinear sinks [5]. A characteristic feature of the processes described by Eq. (0.1) is the possibility of existence of a front x = xf(t) which strictly separates regions with u(x, t) = 0 from regions with u(x, t) > 0 in which the perturbations of the transported quantity are localized [6]. In the present paper, the change in the region of localization of the perturbations of the transported quantity is investigated in the Cauchy problems for Eq. (0.1).  相似文献   

9.
Asymptotic solutions of linear systems of ordinary differential equations are employed to discuss the relationship of the solution of a certain “complete” boundary problem.
$$\begin{gathered} \left\{ \begin{gathered} {\text{ }}\frac{{d{\text{ }}x_1 }}{{d{\text{ }}t}} = A_{11} (t,\varepsilon ){\text{ }}x_1 (t,\varepsilon ){\text{ }} + \cdots + A_{1p} (t,\varepsilon ){\text{ }}x_p (t,\varepsilon ) \hfill \\ \varepsilon ^{h_2 } \frac{{d{\text{ }}x_2 }}{{d{\text{ }}t}} = A_{21} (t,\varepsilon ){\text{ }}x_1 (t,\varepsilon ){\text{ }} + \cdots + A_{2p} (t,\varepsilon ){\text{ }}x_p (t,\varepsilon ) \hfill \\ {\text{ }} \vdots {\text{ }} \vdots {\text{ }} \vdots \hfill \\ \varepsilon ^{h_p } \frac{{d{\text{ }}x_2 }}{{d{\text{ }}t}} = A_{p1} (t,\varepsilon ){\text{ }}x_1 (t,\varepsilon ){\text{ }} + \cdots + A_{pp} (t,\varepsilon ){\text{ }}x_p (t,\varepsilon ) \hfill \\ \end{gathered} \right\} \hfill \\ {\text{ }}R(\varepsilon ){\text{ }}x(a,{\text{ }}\varepsilon ){\text{ }} + {\text{ }}S(\varepsilon ){\text{ }}x(b,{\text{ }}\varepsilon ) = c(\varepsilon ){\text{ }} \hfill \\ \end{gathered}$$  相似文献   

10.
We consider as in Part I a family of linearly elastic shells of thickness 2?, all having the same middle surfaceS=?(?)?R 3, whereω?R 2 is a bounded and connected open set with a Lipschitz-continuous boundary, and?l 3 (?;R 3). The shells are clamped on a portion of their lateral face, whose middle line is?(γ 0), whereγ 0 is any portion of withlength γ 0>0. We make an essential geometrical assumption on the middle surfaceS and on the setγ 0, which states that the space of inextensional displacements $$\begin{gathered} V_F (\omega ) = \{ \eta = (\eta _i ) \in H^1 (\omega ) \times H^1 (\omega ) \times H^2 (\omega ); \hfill \\ \eta _i = \partial _v \eta _3 = 0 on \gamma _0 ,\gamma _{\alpha \beta } (\eta ) = 0 in \omega \} , \hfill \\ \end{gathered}$$ where $\gamma _{\alpha \beta }$ (η) are the components of the linearized change is metric tensor ofS, contains non-zero functions. This assumption is satisfied in particular ifS is a portion of cylinder and?(γ 0) is contained in a generatrix ofS. We show that, if the applied body force density isO(? 2) with respect to?, the fieldu(?)=(u i (?)), whereu i (?) denote the three covariant components of the displacement of the points of the shell given by the equations of three-dimensional elasticity, once “scaled” so as to be defined over the fixed domain Ω=ω×]?1, 1[, converges as?→0 inH 1(Ω) to a limitu, which is independent of the transverse variable. Furthermore, the averageζ=1/2ts ?1 1 u dx 3, which belongs to the spaceV F (ω), satisfies the (scaled) two-dimensional equations of a “flexural shell”, viz., $$\frac{1}{3}\mathop \smallint \limits_\omega a^{\alpha \beta \sigma \tau } \rho _{\sigma \tau } (\zeta )\rho _{\alpha \beta } (\eta )\sqrt {a } dy = \mathop \smallint \limits_\omega \left\{ {\mathop \smallint \limits_{ - 1}^1 f^i dx_3 } \right\} \eta _i \sqrt {a } dy$$ for allη=(η i ) ∈V F (ω), where $a^{\alpha \beta \sigma \tau }$ are the components of the two-dimensional elasticity tensor of the surfaceS, $$\begin{gathered} \rho _{\alpha \beta } (\eta ) = \partial _{\alpha \beta } \eta _3 - \Gamma _{\alpha \beta }^\sigma \partial _\sigma \eta _3 + b_\beta ^\sigma \left( {\partial _\alpha \eta _\sigma - \Gamma _{\alpha \sigma }^\tau \eta _\tau } \right) \hfill \\ + b_\alpha ^\sigma \left( {\partial _\beta \eta _\sigma - \Gamma _{\beta \sigma }^\tau \eta _\tau } \right) + b_\alpha ^\sigma {\text{|}}_\beta \eta _\sigma - c_{\alpha \beta } \eta _3 \hfill \\ \end{gathered} $$ are the components of the linearized change of curvature tensor ofS, $\Gamma _{\alpha \beta }^\sigma$ are the Christoffel symbols ofS, $b_\alpha ^\beta$ are the mixed components of the curvature tensor ofS, andf i are the scaled components of the applied body force. Under the above assumptions, the two-dimensional equations of a “flexural shell” are therefore justified.  相似文献   

11.
We obtain theorems of Phragmén-Lindelöf type for the following classes of elliptic partial differential inequalities in an arbitrary unbounded domain \(\Omega \subseteq \mathbb{R}^n ,{\text{ }}n \geqq 2\) (A.1) $$\sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial x_i }}\left( {a_{ij} 9(x)\frac{{\partial u}}{{\partial xj}}} \right)} + \sum\limits_{i = 1}^n {b_i (x,{\text{ }}u,{\text{ }}\nabla u)\frac{\partial }{{\partial x_i }}} \geqq f(x,{\text{ }}u)$$ where a ij are elliptic in Ω and b i ε L(Ω) and where also a ij are uniformly elliptic and Holder continuous at infinity and b i = O(|x|+1) as x → ∞; (A.2) $${\text{(A}}{\text{.2) }}\sum\limits_{i,j = 1}^n {a_{ij} (x,{\text{ }}u,{\text{ }}\nabla u)\frac{{\partial ^2 u}}{{\partial x_i \partial x_j }}} + \sum\limits_{i = 1}^n {b_i (x,{\text{ }}u,{\text{ }}\nabla u)\frac{\partial }{{\partial x_i }}} \geqq f(x,{\text{ }}u)$$ where aijare uniformly elliptic in Ω and b iε L(Ω); and finally (A.3) $${\text{div(}}\nabla u^p \nabla u {\text{)}} \geqq f{\text{(}}u{\text{), }}p > - 1,$$ where the operator on the left is the so-called P-Laplacian. The function f is always supposed positive and continuous. Moreover u is assumed throughout to be in the natural weak Sobolev space corresponding to the particular inequality under consideration, namely u ε. W loc 1,2 (Ω) ∩L loc t8 (Ω) for (A.I), W loc 2,n(Ω) for (A.2), and W loc 1,p+2 (Ω) ∩ L loc t8 (Ω) for (A.3). As a consequence of our results we obtain both non-existence and Liouville theorems, as well as existence theorems for (A.1).  相似文献   

12.
Summary The transport of particles, caused by axial and radial diffusion and axial flow of convection, will be considered in a D.C. arc and in a laminar flame. The following mathematical model will be discussed. Assuming a steady state in both cases the mass transport may be described in cylindrical coordinates (r, z) by the following partial differential equation where C means the particle concentration, D the coefficient of diffusion, and W the axial velocity. D and W are taken to be constant; various boundary conditions, corresponding to different approximations of the physical situation, are considered. Solutions of (0.1) are obtained in an explicit form.  相似文献   

13.
Let v and ω be the velocity and the vorticity of the a suitable weak solution of the 3D Navier–Stokes equations in a space-time domain containing z0=(x0, t0)z_{0}=(x_{0}, t_{0}), and let Qz0,r = Bx0,r ×(t0 -r2, t0)Q_{z_{0},r}= B_{x_{0},r} \times (t_{0} -r^{2}, t_{0}) be a parabolic cylinder in the domain. We show that if either $\nu \times \frac{\omega}{|\omega|} \in L^{\gamma,\alpha}_{x,t}(Q_{z_{0},r})$\nu \times \frac{\omega}{|\omega|} \in L^{\gamma,\alpha}_{x,t}(Q_{z_{0},r}) with $\frac{3}{\gamma} + \frac{2}{\alpha} \leq 1, {\rm or} \omega \times \frac{\nu} {|\nu|} \in L^{\gamma,\alpha}_{x,t} (Q_{z_{0},r})$\frac{3}{\gamma} + \frac{2}{\alpha} \leq 1, {\rm or} \omega \times \frac{\nu} {|\nu|} \in L^{\gamma,\alpha}_{x,t} (Q_{z_{0},r}) with \frac3g + \frac2a £ 2\frac{3}{\gamma} + \frac{2}{\alpha} \leq 2, where Lγ, αx,t denotes the Serrin type of class, then z0 is a regular point for ν. This refines previous local regularity criteria for the suitable weak solutions.  相似文献   

14.
The purpose of this article is to derive a macroscopic model for a certain class of inertial two-phase, incompressible, Newtonian fluid flow through homogenous porous media. Starting from the continuity and Navier–Stokes equations in each phase β and γ, the method of volume averaging is employed subjected to constraints that are explicitly provided to obtain the macroscopic mass and momentum balance equations. These constraints are on the length- and time-scales, as well as, on some quantities involving capillary, Weber and Reynolds numbers that define the class of two-phase flow under consideration. The resulting macroscopic momentum equation relates the phase-averaged pressure gradient to the filtration or Darcy velocity in a coupled nonlinear form explicitly given by
or equivalently
In these equations, and are the inertial and coupling inertial correction tensors that are functions of flow-rates. The dominant and coupling permeability tensors and and the permeability and viscous drag tensors and are intrinsic and are those defined in the conventional manner as in (Whitaker, Chem Eng Sci 49:765–780, 1994) and (Lasseux et al., Transport Porous Media 24(1):107–137, 1996). All these tensors can be determined from closure problems that are to be solved using a spatially periodic model of a porous medium. The practical procedure to compute these tensors is provided.  相似文献   

15.
We state a particular case of one of the theorems which we shall prove. Let Ω be a bounded open set in n with smooth boundary and let σ=(σ ij )be a symmetric second-order tensor with components σ ij εH k(Ω) for some (positive or negative) integer k; H k are Sobolev spaces on Ω. Then we have for some u i εH k +1(Ω),i=1,...,n, if and only if (if k<0, the integral is in fact a duality) for any symmetric tensor (ω with components and such that ). Some applications in the theory of elasticity are also given.  相似文献   

16.
Steady vortices for the three-dimensional Euler equation for inviscid incompressible flows and for the shallow water equation are constructed and shown to tend asymptotically to singular vortex filaments. The construction is based on a study of solutions to the semilinear elliptic problem $$ \left\{ \begin{aligned} -{\rm div} \left(\frac{\nabla u_{\varepsilon}}{b}\right) & = \frac{1}{\varepsilon^2} b f \left(u_{\varepsilon} - \log \tfrac{1}{\varepsilon} q \right) & & \text{ in } \; \Omega, \\u_\varepsilon & = 0 & & \text{ on } \; \partial \Omega, \end{aligned}\right.$$ for small values of ${\varepsilon > 0}$ .  相似文献   

17.
We study the behavior of the soliton solutions of the equation i\frac?y?t = - \frac12m Dy+ \frac12We(y) + V(x)y,i\frac{\partial\psi}{{\partial}t} = - \frac{1}{2m} \Delta\psi + \frac{1}{2}W_{\varepsilon}^{\prime}(\psi) + V(x){\psi},  相似文献   

18.
A system is described which allows the recreation of the three-dimensional motion and deformation of a single hydrogen bubble time-line in time and space. By digitally interfacing dualview video sequences of a bubble time-line with a computer-aided display system, the Lagrangian motion of the bubble-line can be displayed in any viewing perspective desired. The u and v velocity history of the bubble-line can be rapidly established and displayed for any spanwise location on the recreated pattern. The application of the system to the study of turbulent boundary layer structure in the near-wall region is demonstrated.List of Symbols Reynolds number based on momentum thickness u /v - t+ nondimensional time - u shear velocity - u local streamwise velocity, x-direction - u + nondimensional streamwise velocity - v local normal velocity, -direction - x + nondimensional coordinate in streamwise direction - + nondimensional coordinate normal to wall - + wire wire nondimensional location of hydrogen bubble-wire normal to wall - z + nondimensional spanwise coordinate - momentum thickness - v kinematic viscosity - W wall shear stress  相似文献   

19.
20.
We study the regularity of the extremal solution of the semilinear biharmonic equation ${{\Delta^2} u=\frac{\lambda}{(1-u)^2}}We study the regularity of the extremal solution of the semilinear biharmonic equation D2 u=\fracl(1-u)2{{\Delta^2} u=\frac{\lambda}{(1-u)^2}}, which models a simple micro-electromechanical system (MEMS) device on a ball B ì \mathbbRN{B\subset{\mathbb{R}}^N}, under Dirichlet boundary conditions u=?n u=0{u=\partial_\nu u=0} on ?B{\partial B}. We complete here the results of Lin and Yang [14] regarding the identification of a “pull-in voltage” λ* > 0 such that a stable classical solution u λ with 0 < u λ < 1 exists for l ? (0,l*){\lambda\in (0,\lambda^*)}, while there is none of any kind when λ > λ*. Our main result asserts that the extremal solution ul*{u_{\lambda^*}} is regular (supB ul* < 1 ){({\rm sup}_B u_{\lambda^*} <1 )} provided N \leqq 8{N \leqq 8} while ul*{u_{\lambda^*}} is singular (supB ul* = 1){({\rm sup}_B u_{\lambda^*} =1)} for N \geqq 9{N \geqq 9}, in which case 1-C0|x|4/3 \leqq ul* (x) \leqq 1-|x|4/3{1-C_0|x|^{4/3} \leqq u_{\lambda^*} (x) \leqq 1-|x|^{4/3}} on the unit ball, where C0:=(\fracl*[`(l)])\frac13{C_0:=\left(\frac{\lambda^*}{\overline{\lambda}}\right)^\frac{1}{3}} and [`(l)]: = \frac89(N-\frac23)(N- \frac83){\bar{\lambda}:= \frac{8}{9}\left(N-\frac{2}{3}\right)\left(N- \frac{8}{3}\right)}.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号