首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
The steady mixed convection boundary-layer flow over a vertical impermeable surface in a porous medium saturated with water at 4°C (maximum density) when the surface heat flux varies as x m and the velocity outside the boundary layer varies as x (1+2m)/2, where x measures the distance from the leading edge, is discussed. Assisting and opposing flows are considered with numerical solutions of the governing equations being obtained for general values of the flow parameters. For opposing flows, there are dual solutions when the mixed convection parameter λ is greater than some critical value λ c (dependent on the power-law index m). For assisting flows, solutions are possible for all values of λ. A lower bound on m is found, m > −1 being required for solutions. The nature of the critical point λ c is considered as well as various limiting forms; the forced convection limit (λ = 0), the free convection limit (λ → ∞) and the limits as m → ∞ and as m → −1.  相似文献   

2.
The unsteady natural convection boundary layer flow over a semi-infinite vertical cylinder is considered with combined buoyancy force effects, for the situation in which the surface temperature T w(x) and C w(x) are subjected to the power-law surface heat and mass flux as K(T /r) = −ax n and D(C /r) = −bx m . The governing equations are solved by an implicit finite difference scheme of Crank-Nicolson method. Numerical results are obtained for different values of Prandtl number, Schmidt number ‘n’ and ‘m’. The velocity, temperature and concentration profiles, local and average skin-friction, Nusselt and Sherwood numbers are shown graphically. The local Nusselt and Sherwood number of the present study are compared with the available result and a good agreement is found to exist. Received on 7 July 1998  相似文献   

3.
The analysis of laminar mixed convection in boundary layers adjacent to a vertical, continuously stretching sheet has been presented. The velocity and temperature of the sheet were assumed to vary in a power-law form, that is, u w (x)=Bx m and T w (x)−T =Ax n . In the presence of buoyancy force effects, similarity solutions were reported for the following two cases: (a) n=0 and m=0.5, which corresponds to an isothermal sheet moving with a velocity of the form u w =Bx 0.5 and (b) n=1 and m=1, which corresponds to a continuous, linearly stretching sheet with a linear surface temperature distribution, i.e. T w T =Ax. Formulation of the present problem shows that the heat transfer characteristics depends on four governing parameters, namely, the velocity exponent parameter m, the temperature exponent parameter n, the buoyancy force parameter G *, and Prandtl number of the fluid. Numerical solutions were generated from a finite difference method. Results for the local Nusselt number, the local friction coefficient, and temperature profiles are presented for different governing parameters. Effects of buoyancy force and Prandtl number on the flow and heat transfer characteristics are thoroughly examined. Received on 17 July 1997  相似文献   

4.
Summary Sufficient conditions are given for the stability and instability of the equilibrium position x=y=z=0 in the mechanical system consisting of a material point constrained to move on the moving surface z=−λ(t)(x2+y2) (λ(t)>0) in a constant field of gravity (the axis 0z is directed vertically upward) under the action of viscous friction of total dissipation.
Sommario Si danno condizioni sufficienti per la stabilità e la instabilità della posizione di equilibrio x=y=z=0 nel sistema meccanico che consiste di un punto materiale vincolato a muoversi sulla superficie mobile z=−λ(t)(x2+y2) (λ(t)>0) in un campo di gravità costante (l'asse 0z è diretto verticalmente e orientato verso l'alto) sotto l'azione di attriti viscosi con dissipazione completa.
  相似文献   

5.
In the present paper the steady boundary-layer flows induced by permeable stretching surfaces with variable temperature distribution are investigated under the aspect of Reynolds' analogy r = St x /C f(x). It is shown that for certain stretching velocities and wall temperature distributions, “Reynolds' function”r, i.e. the ratio of the local Stanton number St x and the skin friction coefficient C f(x) equals −1/2 for any value of the Prandtl number Pr and of the dimensionless suction/injection velocity f w. In all of these cases, the dimensionless temperature field ϑ is connected to the dimensionless downstream velocity f by the simple relationship ϑ=(f )Pr. It is also shown that in the general case, Reynolds' function r may possess several singularities in f w. The largest of them represents a critical value, so that for f w<f w,crit the solutions of the energy equation (although they still satisfy all the boundary conditions) become nonphysical.  相似文献   

6.
A closed-form model for the computation of temperature distribution in an infinitely extended isotropic body with a time-dependent moving-heat sources is discussed. The temperature solutions are presented for the sources of the forms: (i) 01(t)=0 exp(−λt), (ii) 02(t) =0(t/t *)exp(−λt), and 03(t)=0[1+a cost)], where λ and ω are real parameters and t * characterizes the limiting time. The reduced (or dimensionless) temperature solutions are presented in terms of the generalized representation of an incomplete gamma function Γ(α,x;b) and its decomposition C Γ and S Γ. The solutions are presented for moving, -point, -line, and -plane heat sources. It is also demonstrated that the present analysis covers the classical temperature solutions of a constant strength source under quasi-steady state situations. Received on 13 June 1997  相似文献   

7.
 An numerical study of the flow and heat transfer characteristics associated with a heated, continuously stretching surface being cooled by a mixed convection flow has been carried out. The relevant heat transfer mechanisms are of interest in a wide variety of practical applications, such as hot rolling, continuous casting, extrusion, and drawing. The surface velocity of the continuously stretching sheet was assumed to vary according to a power-law form, that is, u w (x)=Cx p . Two conditions of surface heating were considered, a variable wall temperature (VWT) in the form T w (x)−T =Ax n and a variable surface heat flux (VHF) in the form q w (x)=Bx m . The governing differential equations are transformed by introducing proper nonsimilarity variables and solved numerically using a procedure based on finite difference approximations. Results for the local Nusselt number and the local friction coefficient are obtained for a wide range of governing parameters, such as the surface velocity parameter p, the wall temperature exponent n, the surface heat flux exponent m, the buoyancy force parameters (ξ for the VWT case and χ for the VHF case), and Prandtl number of the fluid. It is found that the local Nusselt number is increased with increasing the velocity exponent parameter p for the VWT case, while the opposite trend is observed for the VHF case. The local friction coefficient is increased for a decelerated stretching surface, while it is decreased for an accelerated stretching surface. Also, appreciable effects of the buoyancy force on the local Nusselt number and the local friction coefficient are observed for both VWT and VHF cases, as expected. Received on 11 January 1999  相似文献   

8.
The problem of steady mixed convection boundary layer flow over a vertical impermeable flat plate in a porous medium saturated with water at 4°C (maximum density) when the temperature of the plate varies as x m and the velocity outside boundary layer varies as x 2 m , where x measures the distance from the leading edge of the plate and m is a constant is studied. Both cases of the assisting and the opposing flows are considered. The plate is aligned parallel to a free stream velocity U oriented in the upward or downward direction, while the ambient temperature is T = T m (temperature at maximum density). The mathematical models for this problem are formulated, analyzed and simplified, and further transformed into non-dimensional form using non-dimensional variables. Next, the system of governing partial differential equations is transformed into a system of ordinary differential equations using the similarity variables. The resulting system of ordinary differential equations is solved numerically using a finite-difference method known as the Keller-box scheme. Numerical results for the non-dimensional skin friction or shear stress, wall heat transfer, as well as the temperature profiles are obtained and discussed for different values of the mixed convection parameter λ and the power index m. All the numerical solutions are presented in the form of tables and figures. The results show that solutions are possible for large values of λ and m for the case of assisting flow. Dual solutions occurred for the case of opposing flow with limited admissible values of λ and m. In addition, separation of boundary layers occurred for opposing flow, and separation is delayed for the case of water at 4°C (maximum density) compared to water at normal temperature.  相似文献   

9.
The optimal dimensions of convective-radiating circular fins with variable profile, heat-transfer coefficient and thermal conductivity, as well as internal heat generation are obtained. A profile of the form y=(w/2) [1+(r o/r) n ] is studied, while variation of thermal conductivity is of the form k=k o[1+ɛ((TT )/ (T bT )) m ]. The heat-transfer coefficient is assumed to vary according to a power law with distance from the bore, expressed as h=K[(rr o)/(r er o)]λ. The results for λ=0 to λ=1.9, and −0.4≤ɛ≤0.4, have been expressed by suitable dimensionless parameters. A correlation for the optimal dimensions of a constant and variable profile fins is presented in terms of reduced heat-transfer rate. It is found that a (quadratic) hyperbolic circular fin with n=2 gives an optimum performance. The effect of radiation on the fin performance is found to be considerable for fins operating at higher base temperatures, whereas the effect of variable thermal conductivity on the optimal dimensions is negligible for the variable profile fin. It is also observed, in general, that the optimal fin length and the optimal fin base thickness are greater when compared to constant fin thickness. Received on 22 February 1999  相似文献   

10.
The boundary layer flow over a uniformly moving vertical surface with suction or injection is studied when the buoyancy forces assist or oppose the flow. Similarity solutions are obtained for the boundary layer equations subject to power law temperature and velocity boundary conditions. The effect is of various governing parameters, such as Prandtl number Pr, temperature exponent n, injection parameter d, and the mixed convection parameter λ=Gr/Re2, which determine the velocity and temperature distributions and the heat transfer coefficient, are studied. The heat transfer coefficient increases as λ assisting the flow for all d at Pr=0.72 however, for n=−1 it decreases sharply with λ. On the other hand, increasing λ has no effect on heat transfer coefficient for Pr=10 at n=0, and 1 for almost all values of d studied. However, for n=−1 it has similar effect as for Pr=0.72. It is also found that Nusselt number increases as n increases for fixed λ and d. Received on 26 March 1997  相似文献   

11.
A continuous surface stretched with velocity u w=u w (x) and having the temperature distribution T w=T w (x) interacts with the viscous fluid in which it is immersed both mechanically and thermally. The thermal interaction is characterized by the surface heat flux q w=q w (x) and the mechanical one by the skin friction τ ww (x). In the whole previous theoretical research concerned with such processes, either (u w and T w) or (u w and q w) have been prescribed as known boundary conditions. The goal of the present paper is to initiate the investigation of the boundary layer flows induced by stretching processes for which either (τ w and T w ) or (τ w and q w) are the prescribed quantities. The case of an isothermal surface stretched with constant skin friction, (τ w=const., T w=const. ≠ T ) is worked out in detail. The corresponding flow and heat transfer characteristics are compared to those obtained for the (well known) case of a uniformly moving isothermal surface (u w=const., T w=const. ≠ T ).  相似文献   

12.
Let Ω be a bounded Lipschitz domain in ℝ n with n ≥ 3. We prove that the Dirichlet Laplacian does not admit any eigenfunction of the form u(x) =ϕ(x′)+ψ(x n) with x′=(x1, ..., x n−1). The result is sharp since there are 2-d polygonal domains in which this kind of eigenfunctions does exist. These special eigenfunctions for the Dirichlet Laplacian are related to the existence of uniaxial eigenvibrations for the Lamé system with Dirichlet boundary conditions. Thus, as a corollary of this result, we deduce that there is no bounded Lipschitz domain in 3-d for which the Lamé system with Dirichlet boundary conditions admits uniaxial eigenvibrations. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

13.
We study the spectral and linear stability of Riemann solutions with multiple Lax shocks for systems of conservation laws. Using a self-similar change of variables, Riemann solutions become stationary solutions for the system u t + (Df(u) − x I)u x = 0. In the space of O((1 + |x|)−η) functions, we show that if , then λ is either an eigenvalue or a resolvent point. Eigenvalues of the linearized system are zeros of the determinant of a transcendental matrix. On some vertical lines in the complex plane, called resonance lines, the determinant can be arbitrarily small but nonzero. A C 0 semigroup is constructed. Using the Gearhart–Prüss Theorem, we show that the solutions are O(e γ t ) if γ is greater than the real parts of the eigenvalues and the coordinates of resonance lines. We study examples where Riemann solutions have two or three Lax-shocks. Dedicated to Professor Pavol Brunovsky on his 70th birthday.  相似文献   

14.
The paper is aimed at reviewing and adding some new results to our recent work on a force theory for viscous compressible flows around a finite body. It has been proposed to analyze aerodynamic forces directly in terms of fluid elements of nonzero vorticity and density gradient. Let ρ denote the density, u the velocity, and ω the vorticity. It is demonstrated that for largely separated flows about bluff bodies, there are two major source elements: R e(x) =−?u 2∇ρ·∇ϕ and V e(x) =−u×ω·∇ϕ, where ϕ is an acyclic potential, generated by the solid body moving with unit velocity in the negative direction of the force considered. In particular, under mild conditions, the (unique) choice of ϕ enforces that the elements R e(x) and V e(x) decay rapidly away from the body. Four kinds of finite body are considered: a circular cylinder, a sphere, a hemi sphere-cylinder, and a delta wing of elliptic section—all in transonic-to-supersonic regimes. From an extensive numerical study carried out for these bodies, it is found that these two elements contribute to 95% or more of the total drag or lift for all the cases under consideration. Moreover, R e(x) due to density gradient becomes progressively important relative to V e(x) due to vorticity as the Mach number increases. The present method of force analysis enables effective analysis and assessment of relative importance of aerodynamics forces, contributed from individual flow structures. The analysis could therefore be very much useful in view of the rapid growth in numerical fluid dynamics; detailed (either local or global) flow information is often available. The paper is dedicated to Sir James Lighthill in honor of his great contributions to aeronautics on the occasion of the publication of his collected works. Received 3 January 1997 and accepted 11 April 1997  相似文献   

15.
We establish new properties of solutions of the functional differential equation x′(t) = ax(t) + bx(t − r) + cx′(t − r) + px(qt) + hx′(qt) + f 1(x(t), x(t − r), x′(t − r), x(qt), x′(qt)) in the neighborhood of the singular point t = +∞. __________ Translated from Neliniini Kolyvannya, Vol. 10, No. 1, pp. 144–160, January–March, 2007.  相似文献   

16.
We establish the existence of Lipschitz stable invariant manifolds for semiflows generated by a delay equation x′ = L(t)x t + f (t, x t , λ), assuming that the linear equation x′ = L(t)x t admits a polynomial dichotomy and that f is a sufficiently small Lipschitz perturbation. Moreover, we show that the stable invariant manifolds are Lipschitz in the parameter λ. We also consider the general case of nonuniform polynomial dichotomies.  相似文献   

17.
We prove radial symmetry (or axial symmetry) of the mountain pass solution of variational elliptic systems − AΔu(x) + ∇ F(u(x)) = 0 (or − ∇.(A(r) ∇ u(x)) + ∇ F(r,u(x)) = 0,) u(x) = (u 1(x),...,u N (x)), where A (or A(r)) is a symmetric positive definite matrix. The solutions are defined in a domain Ω which can be , a ball, an annulus or the exterior of a ball. The boundary conditions are either Dirichlet or Neumann (or any one which is invariant under rotation). The mountain pass solutions studied here are given by constrained minimization on the Nehari manifold. We prove symmetry using the reflection method introduced in Lopes [(1996), J. Diff. Eq. 124, 378–388; (1996), Eletron. J. Diff. Eq. 3, 1–14].  相似文献   

18.
In a bounded domain of R n+1, n ≧ 2, we consider a second-order elliptic operator, ${A=-{\partial_{x_0}^2} - \nabla_x \cdot (c(x) \nabla_x)}In a bounded domain of R n+1, n ≧ 2, we consider a second-order elliptic operator, A=-?x02 - ?x ·(c(x) ?x){A=-{\partial_{x_0}^2} - \nabla_x \cdot (c(x) \nabla_x)}, where the (scalar) coefficient c(x) is piecewise smooth yet discontinuous across a smooth interface S. We prove a local Carleman estimate for A in the neighborhood of any point of the interface. The “observation” region can be chosen independently of the sign of the jump of the coefficient c at the considered point. The derivation of this estimate relies on the separation of the problem into three microlocal regions and the Calderón projector technique. Following the method of Lebeau and Robbiano (Comm Partial Differ Equ 20:335–356, 1995) we then prove the null controllability for the linear parabolic initial problem with Dirichlet boundary conditions associated with the operator ?t - ?x ·(c(x) ?x){{\partial_t - \nabla_x \cdot (c(x) \nabla_x)}} .  相似文献   

19.
Let be a domain. Suppose that fW1,1loc(Ω,R2) is a homeomorphism such that Df(x) vanishes almost everywhere in the zero set of Jf. We show that f-1W1,1loc(f(Ω),R2) and that Df−1(y) vanishes almost everywhere in the zero set of Sharp conditions to quarantee that f−1W1,q(f(Ω),R2) for some 1<q≤2 are also given.  相似文献   

20.
The Darcy free convection boundary layer flow over a vertical flat plate is considered in the presence of volumetric heat generation/absorption. In the present first part of the paper it is assumed that the heat generation/absorption takes place in a self-consistent way, the source term q ′′′S of the energy equation being an analytical function of the local temperature difference TT . In a forthcoming second part, the case of the externally controlled source terms S = S(x,y ) will be considered. It is shown that due to the presence of S, the physical equivalence of the up- and downflows gets in general broken, in the sense that the free convection flow over the upward projecting hot plate (“upflow”) and over its downward projecting cold counterpart (“downflow”) in general become physically distinct. The consequences of this circumstance are examined for different forms of S. Several analytical solutions are given. Some of them describe algebraically decaying boundary layers which can also be recovered as limiting cases of exponentially decayingones. This asymptotic phenomenon is discussed in some detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号