首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Although STEM is at the forefront of many educational initiatives, little is known about various professionals’ perceptions of STEM. This mixed‐methods study surveyed 164 preservice teachers, inservice teachers, administrators, informal educators, and STEM professionals. Quantitative and qualitative questions on the survey elicited participants’ perceptions of STEM, STEM support, and STEM careers. Quantitative analysis revealed that profession influenced understandings of STEM, importance of STEM, support for STEM, and perceptions of STEM career opportunities. Qualitative analysis provided rich explanations for the differences in perceptions among professions. This study suggests that science teacher educators need to ensure preservice teachers have understandings of STEM and STEM careers, K‐16 educators need to emphasize the current importance of STEM, and administrators and policymakers need to align visions of STEM with curriculum and pacing guides so teachers feel supported in their STEM endeavors.  相似文献   

2.
The purpose of the current study was to evaluate the impact of co‐taught integrated STEM methods instruction on preservice elementary teachers’ self‐efficacy for teaching science and mathematics within an integrated STEM framework. Two instructional methods courses (Elementary Mathematics Methods and Elementary Science Methods) were redesigned to include STEM integration components, including STEM model lessons co‐taught by a mathematics and science educator, as well as a special education colleague. Quantitative data were gathered at three time points in the semester (beginning, middle, and end) from 55 preservice teachers examining teacher self‐efficacy for integrated STEM teaching. Qualitative data were gathered from a purposeful sample of seven preservice teachers to further understand preservice teachers’ perceptions on delivering integrated STEM instruction in an elementary setting. Quantitative results showed a significant increase in teacher self‐efficacy across all three time points. Item‐level analysis revealed that self‐efficacy for tasks involving engineering and assessment (both formative and summative) were low across time points, while self‐efficacy for tasks involving technology and flexibility were consistently high. Qualitative results revealed that the preservice teachers did not feel adequately prepared by university‐level science and mathematics courses, in terms of content knowledge and integration of science and mathematics for elementary students.  相似文献   

3.
Although science, technology, engineering, and mathematics (STEM) education sits at the center of a national conversation, comparatively little attention has been given to growing need for STEM teacher preparation, particularly at the elementary level. This study analyzes the outcomes of a novel, preservice STEM teacher education model. Building on both general and STEM‐specific teacher preparation principles, this program combined two traditional mathematics and science methods courses into one STEM block. Analysis compared preservice teachers in the traditional courses with those enrolled in the STEM block, investigating STEM teaching efficacy, reported and exhibited pedagogical practices, and STEM literacies using a pre‐post survey as well as analysis of lesson planning products. Linear regression models indicated that substantial growth was seen in both approaches but STEM block preservice teachers reported significantly greater gains in STEM teaching efficacy as compared with traditional‐route teachers. Lesson planning artifacts also demonstrated increased facilitation of STEM literacies, with specific attention to content integration, engineering and design, and arts inclusion. Technology and computational thinking emerged as areas for further growth and clarification in STEM teacher education models. Findings contribute to a growing research base on developing the STEM teacher workforce.  相似文献   

4.
Young children are capable of engaging in STEM investigations when they are guided by skilled and knowledgeable teachers. However, many elementary teachers may lack sufficient STEM content knowledge and report feeling unprepared to teach STEM content. Two university faculty members in mathematics and science education, worked to cultivate and advance two designated Elementary STEM‐Focused professional development schools through a two year series of an after‐school STEM professional development (PD) Program. As the STEM PD Program progressed, it became evident that teachers were interested in and needed more experiences with the elements of the engineering process for young learners. With this in mind, several of the PD sessions were designed to highlight the engineering process and allow teachers to experience various activities that would engage young learners. To examine how this focus on the engineering process impacted the teachers in this STEM PD Program, a research study was organized during year two of the STEM PD Program. The results of this study provide evidence that this program had a positive influence on the teacher participants’ engineering teacher efficacy and implementation of engineering lessons and activities within their classrooms.  相似文献   

5.
6.
Science, technology, engineering, and mathematics (STEM) integration is a desired outcome according to Next Generation Science Standards. However, learning to teach integrated STEM content has been challenging for teachers. Consequently, the purpose of this qualitative study was to describe how 16 preservice teachers enrolled in a mathematics methods course created integrated STEM lesson plans that incorporated an authentic engineering problem. Content analysis of the completed integrated STEM lesson plans used the Quality K-12 Engineering Education Framework to identify any characteristics of engineering. We found that 15 of 16 preservice teachers demonstrated at least an emerging ability to create an integrated STEM lesson that contained an engineering problem, constraints, a prototype or model, model testing, and data collection and analysis related to the model. We concluded that giving preservice teachers opportunities to experience engineering design problems could better prepare them to design and implement integrated STEM education in their classrooms. The findings from this study have practical implications for mathematics methods teacher educators who teach the pedagogy behind STEM education. This study also has theoretical implications because socially situated learning theory was extended to Model-Eliciting Activities and connected them to the K-12 Framework for Quality Engineering Education.  相似文献   

7.
Previous literature suggests that service learning may offer new opportunities to support the development of preservice science and math teachers, but few studies examine service learning beyond isolated teaching events. In this qualitative study, we attempt to improve upon this literature by following Master of Arts in Teaching (MAT) students’ views of their service learning experiences throughout their MAT program and first two years teaching. Data sources included audiotaped individual interviews, focus group field notes, and surveys with seven preservice teachers over a three‐year period. Three major findings emerged from the data analysis. First, participants identified characteristics of service learning teaching events that made them particularly useful, and these included the timing of events, targeted grade level, exposure to high‐needs contexts, and opportunities to practice pedagogical skills. Second, participation in the service learning events improved preservice teachers’ confidence and comfort teaching in high‐needs contexts, but several concerns and deficit perspectives about teaching in high‐needs contexts remained. Third, participants indicated specific ways that the service learning teaching events impacted their readiness to teach in high‐needs contexts. These findings may inform other science and math teacher educators seeking to embed service learning opportunities into their programs.  相似文献   

8.
This study investigates grades 5 and 6 science, technology, engineering, and mathematics (STEM) teachers' planned and actualized engineering design‐based instruction, the instruments used to characterize their efforts, and the implications this work has for teachers' implementations of an integrated approach to STEM education. Participants included 23 STEM teachers from six schools (three rural, two suburban, and one urban). Data were gathered via lesson implementation plans and classroom observations. Teachers demonstrated strength in planning for standards‐ and engineering design‐based lessons, incorporating engineering practices within their respective implementation plans, and aligning their plans with content and design process standards. Missing from their plans was attention to science concepts and their placement, use, and application within a design task. Classroom observations indicated that the teacher participants gave priority to “front loading,” the design process by concentrating more of their instructional time on problem identification and planning and less time on testing designs, communicating performance results, and redesigning. Measures utilized in this study provided insight into the content of teachers' planning and subsequent instruction and suggest potential for capturing content planning in the context of classrooms in which teachers are attempting to integrate novel curriculum, such as the new standards for engineering practices.  相似文献   

9.
A deep conceptual understanding of elementary mathematics as appropriate for teaching is increasingly thought to be an important aspect of elementary teacher capacity. This study explores preservice teachers’ initial mathematical understandings and how these understandings developed during a mathematics methods course for upper elementary teachers. The methods course was supplemented by a newly designed optional course in mathematics for teaching. Teacher candidates choosing the optional course were initially weaker in terms of mathematical understanding than their peers, yet showed stronger mathematical development after engaging in the extra hours the optional course provided.  相似文献   

10.
The purpose of this study is to provide an in‐depth analysis of attitudes and perceptions related to the integration of mathematics, science, and technology education of preservice teachers preparing to teach STEM disciplines. Longitudinal data by individual cohort and across 7 years of the Integrated Mathematics, Science, and Technology (MSAT) Program are reported, analyzed, and interpreted to help design and improve preservice teacher education programs and improve teaching and learning in STEM classrooms. Results of quantitative analyses indicate that there was generally no change in preservice teacher attitudes and perceptions related to the value of the integration of mathematics, science, and technology education—they clearly valued integration at the onset and at the completion of the program. However, there was a significant change in preservice teacher attitudes and perceptions related to integration feasibility in terms of inefficiency and difficulty. Implications for teacher education programs include: (a) more exposure to concepts, processes, and skills in STEM that are similar, analogous, complementary, or synergistic; (b) familiarity with instructional strategies and access to resources; (c) deeper understanding of content across STEM; and (d) strategies for collaboration and team work to make integrated instruction time more efficient and less difficult to manage.  相似文献   

11.
Nationally, there is a steadily increasing emphasis on the improvement of STEM education. This includes the integration of STEM subjects that have been traditionally taught separately, making it critical that prospective STEM educators are equipped to teach using integrated STEM approaches. Connected, an important challenge is providing preservice STEM teachers with experiences in which they can develop an understanding of how to optimize learning through integrated STEM instruction. A potentially effective way to foster this conceptualization is through video analysis of integrated STEM practices. To investigate this possibility, here we present a semester‐long study focused on engaging preservice STEM teachers with observing, analyzing, and reflecting about instructional STEM practices through a video‐based intervention. Findings suggest that viewing and reflecting on integrated STEM practices may enhance preservice STEM teachers' conceptions of integrated STEM approaches, representing a practical method of preservice STEM teacher professional development.  相似文献   

12.
Though the importance of including practicum experiences in programs for the preparation of elementary preservice teachers is generally accepted, the nature of these experiences on the development of skills in teaching science can vary greatly. This study compares the effect of variations in field experiences at two institutions, one which included a practicum that was not connected to the science methods course and instructor and the other where the practicum was concurrent with and taught by the methods instructor. Interview data and results of the STEBI‐B were collected across four years, with a total n = 129. The concurrent, embedded practicum yielded consistent increases in self‐efficacy across the semesters. Also after the embedded practicum, preservice teachers showed greater understanding in research‐based science teaching practices.  相似文献   

13.
The aim of this study is to report findings from the Drawing‐Elementary‐Science‐Teacher‐Ideal‐Not, or the DESTIN procedure. The study utilizes a simple drawing procedure accompanied by a narrative and discussion for understanding preservice teachers' images of science, science teaching, and the science teacher. Ninety drawings from two sections of an elementary science methods course were analyzed. Looking at the pre‐drawings from the beginning of the semester and post‐drawings done at the end of the semester, the findings relate the value of using drawings in teacher education and the usefulness of this procedure to promote discussions about science teaching, the construction of new images and practices for teaching elementary science, and teacher identity. The DESTIN procedure has potential as a productive activity for teacher education and long‐term professional development by making more explicit teachers' views of science teaching and learning and their past experiences as science learners.  相似文献   

14.
The purpose of this study was to assess the impact a community‐based service learning program might have on preservice teachers' science instruction during student teaching. Designed to promote science inquiry, preservice teachers learned how to offer students more opportunities to develop their own ways of thinking through utilization of an afterschool science program that provided them extended opportunities to practice their science teaching skills. Three preservice teachers were followed to examine and evaluate the transfer of this experience to their student teaching classroom. Investigation methods included field observations and semi‐structured, individual interviews. Findings indicate that preservice teachers expanded their ideas of science inquiry instruction to include multiple modes of formative assessment, while also struggling with the desire to give students the correct answer. While the participants' experiences are few in number, the potential of afterschool teaching experience serving as an effective learning experience in preservice teacher preparation is significant. With the constraints of high‐stakes testing, community‐based service learning teaching opportunities for elementary and middle‐school preservice teachers can support both the development and refinement of inquiry instruction skills.  相似文献   

15.
This study examined (a) the differences in preservice teachers’ procedural knowledge in four areas of fraction operations in Taiwan and the United States, (b) the differences in preservice teachers’ conceptual knowledge in four areas of fraction operations in Taiwan and the United States, and (c) correlation in preservice teachers’ conceptual knowledge and procedural knowledge of fractions in Taiwan and the United States. Participants were preservice teachers (N = 49) in a teacher education program in the United States and comparable Chinese preservice teachers (N = 47). Results indicated that Chinese preservice teachers performed better in procedural knowledge on fraction operations than American preservice teachers. No significant differences were found for conceptual knowledge on fraction division. Further, the correlation in this study showed that for Chinese and American preservice teachers, the relationship between conceptual and procedural knowledge of fraction operations was weak.  相似文献   

16.
The goal of this article is to inform professional understanding regarding preservice science teachers’ knowledge of engineering and the engineering design process. Originating as a conceptual study of the appropriateness of “knowledge as design” as a framework for conducting science teacher education to support learning related to engineering design, the findings are informed by an ongoing research project. Perkins’s theory encapsulates knowledge as design within four complementary components of the nature of design. When using the structure of Perkins’s theory as a framework for analysis of data gathered from preservice teachers conducting engineering activities within an instructional methods course for secondary science, a concurrence between teacher knowledge development and the theory emerged. Initially, the individuals, who were participants in the research, were unfamiliar with engineering as a component of science teaching and expressed a lack of knowledge of engineering. The emergence of connections between Perkins’s theory of knowledge as design and knowledge development for teaching were found when examining preservice teachers’ development of creative and systematic thinking skills within the context of engineering design activities as well as examination of their knowledge of the application of science to problem‐solving situations.  相似文献   

17.
This paper presents qualitative and quantitative approaches to exploring teachers’ experiences of mathematics anxiety (for learning and doing mathematics) and mathematics teaching anxiety (for instructing others in mathematics), the relationship between these types of anxiety and test/evaluation anxiety, and the impacts of anxiety on experiences in teacher education. Findings indicate that mathematics anxiety and mathematics teaching anxiety may be similar (i.e., that preservice teachers perceive a logical continuity and cumulative effect of their experiences of mathematics anxiety as learners in K–12 classrooms that impacts their work as teachers in future K–12 classrooms). Further, anxiety is not limited to occurring in evaluative settings, but when anxiety is triggered by thoughts of evaluation, preservice teachers may be affected by worrying about their own as well as their students' performances. The implications for preservice experiences within a teacher education program and for impacting future students are discussed.  相似文献   

18.
The purpose of this phenomenological study was to explore how science teachers who persisted in urban schools interpreted and responded to the unique features of urban educational contexts. With 17 alumni who taught in metropolitan areas across seven states, the Science Educators for Urban Schools (SEUS) program provided a research setting that offered a unique view of science teachers’ development of knowledge of urban education contexts. Data sources included narratives of teaching experiences from interviews and open‐ended survey items. Findings were interpreted in light of context knowledge for urban educational settings. Findings indicated that science teaching in urban contexts was impacted by the education policy context, notably through accountability policies that narrowed and marginalized science instruction; community context, evident in teacher efforts to make science more relevant to students; and school contexts, notability their ability to creatively adjust for resource deficiencies and continue their own professional growth. Participants utilized this context knowledge to transform student opportunities to learn science. The study suggests that future science education research and teacher preparation efforts would benefit from further attention to the unique elements of urban contexts, specifically the out of classroom contexts that shape science teaching and learning.  相似文献   

19.
Gwendolyn Monica Lloyd 《ZDM》2009,41(6):763-775
This report describes ways that five preservice teachers in the United States viewed and interacted with the rhetorical components (Valverde et al. in According to the book: using TIMSS to investigate the translation of policy into practice through the world of textbooks, Kluwer, 2002) of the innovative school mathematics curriculum materials used in a mathematics course for future elementary teachers. The preservice teachers’ comments reflected general agreement that the innovative curriculum materials contained fewer narrative elements and worked examples, as well as more (and different) exercises and question sets and activity elements, than the mathematics textbooks to which the teachers were accustomed. However, variation emerged when considering the ways in which the teachers interacted with the materials for their learning of mathematics. Whereas some teachers accepted and even embraced changes to the teaching–learning process that accompanied use of the curriculum materials, other teachers experienced discomfort and frustration at times. Nonetheless, each teacher considered that use of the curriculum materials improved her mathematical understandings in significant ways. Implications of these results for mathematics teacher education are discussed.  相似文献   

20.
The purpose of this work was to explore how elementary preservice teachers responded to area conservation tasks. We administered written pre-assessments, followed by semi-structured interviews with 23 preservice teachers, asking them to respond to and reason with area conservation tasks. Findings highlighted several interesting preservice teachers' struggles when assessing area conservation tasks. In many cases, preservice teachers exhibited struggles similar to students, especially with regards to the justification of their area conservation claims. We provide recommendations to assist preservice teachers in their development of mathematical content knowledge in their teacher education programs, so that in the future they may better plan area lessons that promote procedural fluency from conceptual understanding in area measurement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号