首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
A train of periodic deep-water waves propagating on a steady shear current with a vertical distribution of vorticity is investigated by an analytic method, namely the homotopy analysis method (HAM). The magnitude of the vorticity varies exponentially with the magnitude of the stream function, while remaining constant on a particular streamline. The so-called Dubreil–Jacotin transformation is used to transfer the original exponentially nonlinear boundary-value problem in an unknown domain into an algebraically nonlinear boundary-value problem in a known domain. Convergent series solutions are obtained not only for small amplitude water waves on a weak current but also for large amplitude waves on a strong current. The nonlinear wave-current interaction is studied in detail. It is found that an aiding shear current tends to enlarge the wave phase speed, sharpen the wave crest, but shorten the maximum wave height, while an opposing shear current has the opposite effect. Besides, the amplitude of waves and fluid velocity decay over the depth more quickly on an aiding shear current but more slowly on an opposing shear current than that of waves on still water. Furthermore, it is found that Stokes criteria of wave breaking is still valid for waves on a shear current: a train of propagating waves on a shear current breaks as the fiuid velocity at crest equals the wave phase speed. Especially, it is found that the highest waves on an opposing shear current are even higher and steeper than that of waves on still water. Mathematically, this analytic method is rather general in principle and can be employed to solve many types of nonlinear partial differential equations with variable coefficients in science, finance and engineering.  相似文献   

2.
We consider the Isobe-Kakinuma model for two-dimensional water waves in the case of a flat bottom. The Isobe-Kakinuma model is a system of Euler-Lagrange equations for a Lagrangian approximating Luke's Lagrangian for water waves. We show theoretically the existence of a family of small amplitude solitary wave solutions to the Isobe-Kakinuma model in the long wave regime. Numerical analysis for large amplitude solitary wave solutions is also provided and suggests the existence of a solitary wave of extreme form with a sharp crest.  相似文献   

3.
We study nonlinear free‐surface rotational waves generated through the interaction of a vertically sheared current with a topography. Equivalently, the waves may be generated by a pressure distribution along the free surface. A forced Korteweg–de Vries equation (fKdV) is deduced incorporating these features. The weakly nonlinear, weakly dispersive reduced model is valid for small amplitude topographies. To study the effect of gradually increasing the topography amplitude, the free surface Euler equations are formulated in the presence of a variable depth and a sheared current of constant vorticity. Under constant vorticity, the harmonic velocity component is formulated in a simplified canonical domain, through the use of a conformal mapping which flattens both the free surface as well as the bottom topography. Critical, supercritical, and subcritical Froude number regimes are considered, while the bottom amplitude is gradually increased in both the irrotational and rotational wave regimes. Solutions to the fKdV model are compared to those from the Euler equations. We show that for rotational waves the critical Froude number is shifted away from 1. New stationary solutions are found and their stability tested numerically.  相似文献   

4.
A train of periodic deep-water waves propagating on a steady shear current with a vertical distribution of vorticity is investigated by an analytic method, namely the homotopy analysis method (HAM). The magnitude of the vorticity varies exponentially with the magnitude of the stream function, while remaining constant on a particular streamline. The so-called Dubreil–Jacotin transformation is used to transfer the original exponentially nonlinear boundary-value problem in an unknown domain into an algebraically nonlinear boundary-value problem in a known domain. Convergent series solutions are obtained not only for small amplitude water waves on a weak current but also for large amplitude waves on a strong current. The nonlinear wave-current interaction is studied in detail. It is found that an aiding shear current tends to enlarge the wave phase speed, sharpen the wave crest, but shorten the maximum wave height, while an opposing shear current has the opposite effect. Besides, the amplitude of waves and fluid velocity decay over the depth more quickly on an aiding shear current but more slowly on an opposing shear current than that of waves on still water. Furthermore, it is found that Stokes criteria of wave breaking is still valid for waves on a shear current: a train of propagating waves on a shear current breaks as the fiuid velocity at crest equals the wave phase speed. Especially, it is found that the highest waves on an opposing shear current are even higher and steeper than that of waves on still water. Mathematically, this analytic method is rather general in principle and can be employed to solve many types of nonlinear partial differential equations with variable coefficients in science, finance and engineering.  相似文献   

5.
6.
This is a study of singular solutions of the problem of traveling gravity water waves on flows with vorticity. We show that, for a certain class of vorticity functions, a sequence of regular waves converges to an extreme wave with stagnation points at its crests. We also show that, for any vorticity function, the profile of an extreme wave must have either a corner of 120° or a horizontal tangent at any stagnation point about which it is supposed symmetric. Moreover, the profile necessarily has a corner of 120° if the vorticity is nonnegative near the free surface.  相似文献   

7.
We present two stability analyses for exact periodic traveling water waves with vorticity. The first approach leads in particular to linear stability properties of water waves for which the vorticity decreases with depth. The second approach leads to a formal stability property for long water waves that have small vorticity and amplitude although we do not use a small‐amplitude or long‐wave approximation. © 2006 Wiley Periodicals, Inc.  相似文献   

8.
A comprehensive exact treatment of free surface flows governed by shallow water equations (in sigma variables) is given. Several new families of exact solutions of the governing PDEs are found and are shown to embed the well-known self-similar or traveling wave solutions which themselves are governed by reduced ODEs. The classes of solutions found here are explicit in contrast to those found earlier in an implicit form. The height of the free surface for each family of solutions is found explicitly. For the traveling or simple wave, the free surface is governed by a nonlinear wave equation, but is arbitrary otherwise. For other types of solutions, the height of the free surface is constant either on lines of constant acceleration or on lines of constant speed; in another case, the free surface is a horizontal plane while the flow underneath is a sine wave. The existence of simple waves on shear flows is analytically proved. The interaction of large amplitude progressive waves with shear flow is also studied.  相似文献   

9.
We obtain a lower bound for the amplitude of nonzero homoclinic traveling wave solutions of the McKenna–Walter suspension bridge model. As a consequence of our lower bound, all nonzero homoclinic traveling waves become unbounded as their speed of propagation goes to zero (in accordance with numerical observations).  相似文献   

10.
We consider nonlinear finite-amplitude progressive shear-flow waves on a basic velocity profile consisting of two coflowing layers of inviscid equal-density fluid, each of uniform but different vorticity. The problem is formulated as a nonlinear integral equation describing the shape of the vorticity discontinuity in a frame of reference in which the flow is steady. Numerical solutions to this equation are presented for a range of values of the vorticity ratio Ω. For 1 > © ≥ ? 1 the theoretical maximum wave amplitude occurs when the wave crest forms a 90° corner which just touches the appropriate critical-layer stagnation point. The linearized stability of the progressive wave states to arbitrary subharmonic isovortical disturbances is studied numerically. The results indicate stability at moderate values of the wave amplitude.  相似文献   

11.
In this paper we consider the linear elastic wave equation with the free boundary condition (the Neumann condition), and formulate a scattering theory of the Lax and Phillips type and a representation of the scattering kernel. We are interested in surface waves (the Rayleigh wave, etc.) connected closely with situations of boundaries, and make the formulations intending to extract this connection.

The half-space is selected as the free space, and making dents on the boundary is considered as a perturbation from the flat one. Since the lacuna property for the solutions in the outgoing and incoming spaces does not hold because of the existence of the surface waves, instead of it, certain decay estimates for the free space solutions and a weak version of the Morawetz arguments are used to formulate the scattering theory.

We construct the representation of the scattering kernel with outgoing scattered plane waves. In this step, again because of the existence of the surface waves, we need to introduce new outgoing and incoming conditions for the time dependent solutions to ensure uniqueness of the solutions. This introduction is essential to show the representation by reasoning similar to the case of the reduced wave equation.

  相似文献   


12.
For the classical inviscid water wave problem under the influence of gravity, described by the Euler equation with a free surface over a flat bottom, we construct periodic traveling waves with vorticity. They are symmetric waves whose profiles are monotone between each crest and trough. We use global bifurcation theory to construct a connected set of such solutions. This set contains flat waves as well as waves that approach flows with stagnation points. To cite this article: A. Constantin, W. Strauss, C. R. Acad. Sci. Paris, Ser. I 335 (2002) 797–800.  相似文献   

13.
The problem of scattering of Love waves due to the presence of a rigid barrier of finite depth in the crusfal layer of the earth is studied in the present paper. The barrier is in the slightly dissipative surface layer and the surface of the layer is a free surface. The Wiener-Hopf technique is the method of solution. Evaluation of the integrals along appropriate contours in the complex plane yields the reflected, transmitted and the scattered waves. The scattered waves behave as a decaying cylindrical wave at distant points. Numrical computations for the amplitude of the scattered waves have been made versus the wave number. The amplitude falls off rapidly as the wave number increases very slowly.  相似文献   

14.
We investigate linear wave propagation in non-uniform medium under the influence of gravity. Unlike the case of constant properties medium here the linearized Euler equations do not admit a plane-wave solution. Instead, we find a “pseudo-plane-wave”. Also, there is no dispersion relation in the usual sense. We derive explicit analytic solutions (both for acoustic and vorticity waves) which, in turn, provide some insights into wave propagation in the non-uniform case.  相似文献   

15.
An approach, which allows us to construct specific closed-form solitary wave solutions for the KdV-like water-wave models obtained through the Boussinesq perturbation expansion for the two-dimensional water wave problem in the limit of long wavelength/small amplitude waves, is developed. The models are relevant to the case of the bi-directional waves with the amplitude of the left-moving wave of O(ϵ) (ϵ is the amplitude parameter) as compared with that of the right-moving wave. We show that, in such a case, the Boussinesq system can be decomposed into a system of coupled equations for the right- and left-moving waves in which, to any order of the expansion, one of the equations is dependent only on the (main) right-wave elevation and takes the form of the high-order KdV equation with arbitrary coefficients whereas the second equation includes both elevations. Then the explicit solitary wave solutions constructed via our approach may be treated as the exact solutions of the infinite-order perturbed KdV equations for the right-moving wave with the properly specified high-order coefficients. Such solutions include, in a sense, contributions of all orders of the asymptotic expansion and therefore may be considered to a certain degree as modelling the solutions of the original water wave problem under proper initial conditions. Those solitary waves, although stemming from the KdV solitary waves, possess features found neither in the KdV solitons nor in the solutions of the first order perturbed KdV equations.  相似文献   

16.
An approach is developed for the analysis of the interactions of surface waves with depth-varying current fields. The approach is based on an approximate dispersion relation for wave-current interactions derived from the governing equations of the problem (the inviscid Orr-Sommerfeld equations) coupled with the wave kinematic-wave action formulation of surface wave propagation. The approach is particularly useful in that it focuses directly on the wave parameters of interest (the amplitude, frequency, direction, and wavelength of the wave) and eliminates the requirement to solve the inviscid Orr-Sommerfeld equations to derive these parameters. The validity of the approach is demonstrated by comparisons with exact Orr-Sommerfeld solutions.  相似文献   

17.
We consider the classical water wave problem described by the Euler equations with a free surface under the influence of gravity over a flat bottom. We construct two‐dimensional inviscid periodic traveling waves with vorticity. They are symmetric waves whose profiles are monotone between each crest and trough. We use bifurcation and degree theory to construct a global connected set of such solutions. © 2003 Wiley Periodicals, Inc.  相似文献   

18.
In the present work, by employing the multiple time scaling method, we studied the nonlinear waves in shallow-water problem and obtained a set of Korteweg–deVries equations governing the various order terms in the perturbation expansion. By seeking a travelling wave type of solutions for the evolution equations, we have obtained a set of wave speeds associated with each time parameter. It is shown that the speed corresponding to the lowest order time parameter given the wave speed of the conventional reductive perturbation method, whereas the wave speeds corresponding to the higher order time parameters give the speed correction terms. The result obtained here is exactly the same with that of Demiray [H. Demiray, Modified reductive perturbation method as applied to long water waves: Korteweg–deVries hierarchy, Int. J. Nonlinear Sci. 6 (2008) 11–20] who employed the modified reductive perturbation method.  相似文献   

19.
In the present work, utilizing the two dimensional equations of an incompressible inviscid fluid and the reductive perturbation method we studied the propagation of weakly nonlinear waves in water of variable depth. For the case of slowly varying depth, the evolution equation is obtained as the variable coefficient Korteweg-de Vries (KdV) equation. Due to the difficulties for the analytical solutions, a numerical technics so called “the method of integrating factor” is used and the evolution equation is solved under a given initial condition and the bottom topography. It is observed the parameters of bottom topography causes to the changes in wave amplitude, wave profile and the wave speed.  相似文献   

20.
Travelling waves exist in nonlinearly supported beams. It is shown that as the wave speed goes to zero for a special type of nonlinearity, the amplitude of the waves must go to infinity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号