首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ruthenium bis(bipyridine) complexes cis-[Ru(bpy)(2)Im(OH(2))](2+), cis-[Ru(bpy)(2)(Im)(2)](2+), cis-[Ru(bpy)(2)(N-Im)(2)](2+), cis-[Ru(dmbpy)(2)Im(OH(2))](2+), cis-[Ru(dmbpy)(2)(N-Im)(OH(2))](2+)(bpy = 2,2'-bipyridine, dmbpy = 4,4'-dimethyl-2,2'-bipyridine, Im = imidazole, N-Im = N-methylimidazole), have been synthesized under ambient conditions in aqueous solution (pH 7). Their electrochemical and spectroscopic properties, absorption, emission, and lifetimes were determined and compared. The substitution kinetics of the cis-[Ru(bpy)(2)Im(OH(2))](2+) complexes show slower rates and have lower affinities for imidazole ligands than the corresponding cis-[Ru(NH(3))(4)Im(OH(2))](2+) complexes. The crystal structures of the monoclinic cis-[Ru(bpy)(2)(Im)(2)](BF(4))(2), space group = P2(1)/a, Z = 4, a = 11.344(1) ?, b = 17.499(3) ?, c = 15.114(3) ?, and beta = 100.17(1) degrees, and triclinic cis-[Ru(bpy)(2)(N-Im)(H(2)O)](CF(3)COO)(2).H(2)O, space group = P&onemacr;, Z = 2, a = 10.432(4) ?, b = 11.995(3) ?, c = 13.912(5) ?, alpha = 87.03(3) degrees, beta = 70.28(3) degrees, and gamma = 71.57(2) degrees, complexes show that these molecules crystallize as complexes of octahedral Ru(II) to two bidentate bipyridine ligands with two imidazole ligands or a water and an N-methylimidazole ligand cis to each other. The importance of these molecules is associated with their frequent use in the modification of proteins at histidine residues and in comparisons of the modified protein derivatives with these small molecule analogs.  相似文献   

2.
Silica gel bearing isonicotinamide groups was prepared by further modification of 3-aminopropyl-functionalized silica by a reaction with isonicotinic acid and 1,3-dicyclohexylcarbodiimide to yield 3-isonicotinamidepropyl-functionalized silica gel (ISNPS). This support was characterized by means of infrared spectroscopy, elemental analysis, and specific surface area. The ISNPS was used to immobilize the [Ru(NH(3))(4)SO(3)] moiety by reaction with trans-[Ru(NH(3))(4)(SO(2))Cl]Cl, yielding [Si(CH(2))(3)(isn)Ru(NH(3))(4)(SO(3))]. The related immobilized [Si(CH(2))(3)(isn)Ru(NH(3))(4)(L)](3+/2+) (L=SO(2), SO(2-)(4), OH(2), and NO) complexes were prepared and characterized by means of UV-vis and IR spectroscopy, as well as by cyclic voltammetry. Syntheses of the nitrosyl complex were performed by reaction of the immobilized ruthenium ammine [Si(CH(2))(3)(isn)Ru(NH(3))(4)(OH(2))](2+) with nitrite in acid or neutral (pH 7.4) solution. The similar results obtained in both ways indicate that the aqua complex was able to convert nitrite into coordinated nitrosyl. The reactivity of [Si(CH(2))(3)(isn)Ru(NH(3))(4)(NO)](3+) was investigated in order to evaluate the nitric oxide (NO) release. It was found that, upon light irradiation or chemical reduction, the immobilized nitrosyl complex was able to release NO, generating the corresponding Ru(III) or Ru(II) aqua complexes, respectively. The NO material could be regenerated from these NO-depleted materials obtained photochemically or by reduction. Regeneration was done by reaction with nitrite in aqueous solution (pH 7.4). Reduction-regeneration cycles were performed up to three times with no significant leaching of the ruthenium complex.  相似文献   

3.
Fullerene coordination ligands bearing one bipyridine or terpyridine unit were synthesized, and their coordination to ruthenium(II) formed linear rod-like donor-acceptor systems. Steady-state fluorescence of [Ru(bpy)(2)(bpy-C(60))](2+) showed a rapid solvent-dependent, intramolecular quenching of the ruthenium(II) MLCT excited state. Time-resolved flash photolysis in CH(3)CN revealed characteristic transient absorption changes that have been ascribed to the formation of the C(60) triplet state, suggesting that photoexcitation of [Ru(bpy)(2)(bpy-C(60))](2+) results in a rapid intramolecular transduction of triplet excited state energy. The electrochemical studies on both [Ru(bpy)(2)(bpy-C(60))](2+) and [Ru(tpy)(tpy-C(60))](2+) indicated electronic coupling between the metal center and the fullerene core.  相似文献   

4.
Three heterotetranuclear complexes, [{Ru(II)(bpy)(2)(L(n))}(3)Mn(II)](8+) (bpy = 2,2'-bipyridine, n = 2, 4, 6), in which a Mn(II)-tris-bipyridine-like centre is covalently linked to three Ru(II)-tris-bipyridine-like moieties using bridging bis-bipyridine L(n) ligands, have been synthesised and characterised. The electrochemical, photophysical and photochemical properties of these complexes have been investigated in CH(3)CN. The cyclic voltammograms of the three complexes exhibit two successive very close one-electron metal-centred oxidation processes in the positive potential region. The first, which is irreversible, corresponds to the Mn(II)/Mn(III) redox system (E(pa) approximately 0.82 V vs Ag/Ag(+) 0.01 M in CH(3)CN-0.1 M Bu(4)NClO(4)), whereas the second which is, reversible, is associated with the Ru(II)/Ru(III) redox couple (E(1/2) approximately 0.91 V). In the negative potential region, three successive reversible four electron systems are observed, corresponding to ligand-based reduction processes. The three stable dimeric oxidized forms of the complexes, [Mn(2)(III,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](11+), [Mn(2)(IV,IV)O(2){Ru(II)(bpy)(2)(L(n))}(4)](12+) and [Mn(2)(IV,IV)O(2){Ru(III)(bpy)(2)(L(n))}(4)](16+) are obtained in fairly good yields by sequential electrolyses after consumption of respectively 1.5, 0.5 and 3 electrons per molecule of initial tetranuclear complexes. The formation of the di-micro-oxo binuclear complexes are the result of the instability of the {[Ru(II)(bpy)(2)(L(n))](3)Mn(III)}(9+) species, which react with residual water, via a disproportionation reaction and the release of one ligand, [Ru(II)(bpy)(2)(L(n))](2+). A quantitative yield can be obtained for these reactions if the electrochemical oxidations are performed in the presence of an added external base like 2,6-dimethylpyridine. Photophysical properties of these compounds have been investigated showing that the luminescence of the Ru(II)-tris-bipyridine-like moieties is little affected by the presence of manganese within the tetranuclear complexes. A slight quenching of the excited states of the ruthenium moieties, which occurs by an intramolecular process, has been observed. Measurements made at low concentration (<1 x 10(-5) M) indicate that some decoordination of Mn(2+) arises in 1a-c. These measurements allow the calculation of the association constants for these complexes. Finally, photoinduced oxidation of the tetranuclear complexes has been performed by continuous photolysis experiments in the presence of a large excess of a diazonium salt, acting as a sacrificial oxidant. The three successive oxidation processes, Mn(II)--> Mn(III)Mn(IV), Mn(III)Mn(IV)--> Mn(IV)Mn(IV) and Ru(II)--> Ru(III) are thus obtained, the addition of 2,6-dimethylpyridine in the medium giving an essentially quantitative yield for the two first photo-induced oxidation steps as found for electrochemical oxidation.  相似文献   

5.
The trans-[Ru(NO)(NH(3))(4)(P(OH)(3))]Cl(3) complex was synthesized by reacting [Ru(H(2)O)(NH(3))(5)](2+) with H(3)PO(3) and characterized by spectroscopic ((31)P-NMR, δ = 68 ppm) and spectrophotometric techniques (λ = 525 nm, ε = 20 L mol(-1) cm(-1); λ = 319 nm, ε = 773 L mol(-1) cm(-1); λ = 241 nm, ε = 1385 L mol(-1) cm(-1); ν(NO(+)) = 1879 cm(-1)). A pK(a) of 0.74 was determined from infrared measurements as a function of pH for the reaction: trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) + H(2)O ? trans-[Ru(NO)(NH(3))(4)(P(O(-))(OH)(2))](2+) + H(3)O(+). According to (31)P-NMR, IR, UV-vis, cyclic voltammetry and ab initio calculation data, upon deprotonation, trans-[Ru(NO)(NH(3))(4)(P(OH)(3))](3+) yields the O-bonded linkage isomer trans- [Ru(NO)(NH(3))(4)(OP(OH)(2))](2+), then the trans-[Ru(NO)(NH(3))(4)(OP(H)(OH)(2))](3+) decays to give the final products H(3)PO(3) and trans-[Ru(NO)(NH(3))(4)(H(2)O)](3+). The dissociation of phosphorous acid from the [Ru(NO)(NH(3))(4)](3+) moiety is pH dependent (k(obs) = 2.1 × 10(-4) s(-1) at pH 3.0, 25 °C).  相似文献   

6.
Ruthenium aqua complexes [(eta(6)-C(6)Me(6))Ru(II)(L)(OH(2))](2+) {L = bpy (1) and 4,4'-OMe-bpy (2), bpy = 2,2'-bipyridine, 4,4'-OMe-bpy = 4,4'-dimethoxy-2,2'-bipyridine} and iridium aqua complexes [Cp*Ir(III)(L)(OH(2))](2+) {Cp* = eta(5)-C(5)Me(5), L = bpy (5) and 4,4'-OMe-bpy (6)} act as catalysts for hydrogenation of CO(2) into HCOOH at pH 3.0 in H(2)O. The active hydride catalysts cannot be observed in the hydrogenation of CO(2) with the ruthenium complexes, whereas the active hydride catalysts, [Cp*Ir(III)(L)(H)](+) {L = bpy (7) and 4,4'-OMe-bpy (8)}, have successfully been isolated after the hydrogenation of CO(2) with the iridium complexes. The key to the success of the isolation of the active hydride catalysts is the change in the rate-determining step in the catalytic hydrogenation of CO(2) from the formation of the active hydride catalysts, [(eta(6)-C(6)Me(6))Ru(II)(L)(H)](+), to the reactions of [Cp*Ir(III)(L)(H)](+) with CO(2), as indicated by the kinetic studies.  相似文献   

7.
Four distinct intermediates, Ru(IV)═O(2+), Ru(IV)(OH)(3+), Ru(V)═O(3+), and Ru(V)(OO)(3+), formed by oxidation of the catalyst [Ru(Mebimpy)(4,4'-((HO)(2)OPCH(2))(2)bpy)(OH(2))](2+) [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl) and 4,4'-((HO)(2)OPCH(2))(2)bpy = 4,4'-bismethylenephosphonato-2,2'-bipyridine] on nanoITO (1-PO(3)H(2)) have been identified and utilized for electrocatalytic benzyl alcohol oxidation. Significant catalytic rate enhancements are observed for Ru(V)(OO)(3+) (~3000) and Ru(IV)(OH)(3+) (~2000) compared to Ru(IV)═O(2+). The appearance of an intermediate for Ru(IV)═O(2+) as the oxidant supports an O-atom insertion mechanism, and H/D kinetic isotope effects support net hydride-transfer oxidations for Ru(IV)(OH)(3+) and Ru(V)(OO)(3+). These results illustrate the importance of multiple reactive intermediates under catalytic water oxidation conditions and possible control of electrocatalytic reactivity on modified electrode surfaces.  相似文献   

8.
Electrostatic forces play an important role in the interaction between large transition metal complexes and lipid bilayers. In this work, a thioether-cholestanol hybrid ligand (4) was synthesized, which coordinates to ruthenium(II) via its sulfur atom and intercalates into lipid bilayers via its apolar tail. By mixing its ruthenium complex [Ru(terpy)(bpy)(4)](2+) (terpy = 2,2';6',2'-terpyridine; bpy = 2,2'-bipyridine) with either the negatively charged lipid dimyristoylphosphatidylglycerol (DMPG) or with the zwitterionic lipid dimyristoylphosphatidylcholine (DMPC), large unilamellar vesicles decorated with ruthenium polypyridyl complexes are formed. Upon visible light irradiation the ruthenium-sulfur coordination bond is selectively broken, releasing the ruthenium fragment as the free aqua complex [Ru(terpy)(bpy)(OH(2))](2+). The photochemical quantum yield under blue light irradiation (452 nm) is 0.0074(8) for DMPG vesicles and 0.0073(8) for DMPC vesicles (at 25 °C), which is not significantly different from similar homogeneous systems. Dynamic light scattering and cryo-TEM pictures show that the size and shape of the vesicles are not perturbed by light irradiation. Depending on the charge of the lipids, the cationic aqua complex either strongly interacts with the membrane (DMPG) or diffuses away from it (DMPC). Back coordination of [Ru(terpy)(bpy)(OH(2))](2+) to the thioether-decorated vesicles takes place only at DMPG bilayers with high ligand concentrations (25 mol %) and elevated temperatures (70 °C). During this process, partial vesicle fusion was also observed. We discuss the potential of such ruthenium-decorated vesicles in the context of light-controlled molecular motion and light-triggered drug delivery.  相似文献   

9.
Although various reactions involved in photoexcited states of polypyridyl ruthenium(II) complexes have been extensively studied, photoisomerization of the complexes is very rare. We report the first illustration of stoichiometric photoisomerization of trans-[Ru(tpy)(pynp)OH(2)](2+) (1a) [tpy = 2,2':6',2'-terpyridine; pynp = 2-(2-pyridyl)-1,8-naphthyridine] to cis-[Ru(tpy)(pynp)OH(2)](2+) (1a') and the isolation of 1a and 1a' for X-ray crystallographic analysis. Polypyridyl ruthenium(II) aquo complexes are attracting much attention related to proton-coupled electron transfer and water oxidation catalysis. We demonstrate that the photoisomerization significantly controls the redox reactions and water oxidation catalyses involving the ruthenium(II) aquo complexes 1a and 1a'.  相似文献   

10.
Seok WK  Meyer TJ 《Inorganic chemistry》2005,44(11):3931-3941
The oxidation of benzaldehyde and several of its derivatives to their carboxylic acids by cis-[Ru(IV)(bpy)2(py)(O)]2+ (Ru(IV)=O2+; bpy is 2,2'-bipyridine, py is pyridine), cis-[Ru(III)(bpy)2(py)(OH)]2+ (Ru(III)-OH2+), and [Ru(IV)(tpy)(bpy)(O)]2+ (tpy is 2,2':6',2'-terpyridine) in acetonitrile and water has been investigated using a variety of techniques. Several lines of evidence support a one-electron hydrogen-atom transfer (HAT) mechanism for the redox step in the oxidation of benzaldehyde. They include (i) moderate k(C-H)/k(C-D) kinetic isotope effects of 8.1 +/- 0.3 in CH3CN, 9.4 +/- 0.4 in H2O, and 7.2 +/- 0.8 in D2O; (ii) a low k(H2O/D2O) kinetic isotope effect of 1.2 +/- 0.1; (iii) a decrease in rate constant by a factor of only approximately 5 in CH3CN and approximately 8 in H2O for the oxidation of benzaldehyde by cis-[Ru(III)(bpy)2(py)(OH)]2+ compared to cis-[Ru(IV)(bpy)2(py)(O)]2+; (iv) the appearance of cis-[Ru(III)(bpy)2(py)(OH)]2+ rather than cis-[Ru(II)(bpy)2(py)(OH2)]2+ as the initial product; and (v) the small rho value of -0.65 +/- 0.03 in a Hammett plot of log k vs sigma in the oxidation of a series of aldehydes. A mechanism is proposed for the process occurring in the absence of O2 involving (i) preassociation of the reactants, (ii) H-atom transfer to Ru(IV)=O2+ to give Ru(III)-OH2+ and PhCO, (iii) capture of PhCO by Ru(III)-OH2+ to give Ru(II)-OC(O)Ph+ and H+, and (iv) solvolysis to give cis-[Ru(II)(bpy)2(py)(NCCH3)]2+ or the aqua complex and the carboxylic acid as products.  相似文献   

11.
Significant rate enhancements are found for benzyl alcohol oxidation by the Ru(V)═O(3+) form of the water oxidation catalyst [Ru(Mebimpy)(bpy)(OH(2))](2+) [Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine; bpy = 2,2'-bipyridine] compared to Ru(IV)═O(2+) and for the Ru(IV)═O(2+) form with added bases due to a new pathway, concerted hydride proton transfer (HPT).  相似文献   

12.
Mononuclear ruthenium complexes [RuCl(L1)(CH(3)CN)(2)](PF(6)) (2a), [RuCl(L2)(CH(3)CN)(2)](PF(6)) (2b), [Ru(L1)(CH(3)CN)(3)](PF(6))(2) (4a), [Ru(L2)(CH(3)CN)(3)](PF(6))(2) (4b), [Ru(L2)(2)](PF(6))(2) (5), [RuCl(L1)(CH(3)CN)(PPh(3))](PF(6)) (6), [RuCl(L1)(CO)(2)](PF(6)) (7), and [RuCl(L1)(CO)(PPh(3))](PF(6)) (8), and a tetranuclear complex [Ru(2)Ag(2)Cl(2)(L1)(2)(CH(3)CN)(6)](PF(6))(4) (3) containing 3-(1,10-phenanthrolin-2-yl)-1-(pyridin-2-ylmethyl)imidazolylidene (L1) and 3-butyl-1-(1,10-phenanthrolin-2-yl)imidazolylidene (L2) have been prepared and fully characterized by NMR, ESI-MS, UV-vis spectroscopy, and X-ray crystallography. Both L1 and L2 act as pincer NNC donors coordinated to ruthenium (II) ion. In 3, the Ru(II) and Ag(I) ions are linked by two bridging Cl(-) through a rhomboid Ag(2)Cl(2) ring with two Ru(II) extending to above and down the plane. Complexes 2-8 show absorption maximum over the 354-428 nm blueshifted compared to Ru(bpy)(3)(2+) due to strong σ-donating and weak π-acceptor properties of NHC ligands. Electrochemical studies show Ru(II)/Ru(III) couples over 0.578-1.274 V.  相似文献   

13.
Four different poly(pyridine) complexes of ruthenium, viz. Ru(II)(trpy)(phen)(OH(2))](2+) (1), trans-[Ru(III)(2,2'bpy)(2)(OH(2))(OH)](2+) (2), [(2,2'bpy)(2)(OH)Ru(III)ORu(III)(OH)(2,2'bpy)(2)](4+) (3), and [Ru(II)(4,4'bpy)(NH(3))(5)](2+) (4) (2,2'bpy=2,2'-bipyridine, 4,4'bpy=4,4'-bipyridine, trpy=2,2',2"-terpyridine, phen=1,10-phenanthroline), were tested as non-physiological charge mediators of 'second-generation' glucose biosensors. The membranes for these biosensors were prepared by casting anionic carboxymethylated beta-cyclodextrin polymer films (beta-CDPA) directly onto the Pt or glassy carbon (GC) disk electrodes. Simultaneously, glucose oxidase (GOD) was immobilized in the films by covalent bonding and the Ru complexes were incorporated both by inclusion in the beta-CD molecular cavities and by ion exchange at the fixed carboxymethyl cation-exchange sites. The leakage of the mediator from the polymer has been minimized by adopting a suitable pre-treatment procedure. The biosensors catalytic activities increased in the order 1<2<3<4, as established by linear sweep voltammetry. In case of complexes 2-4, the enzymatic glucose oxidation was mediated by the Ru complexes at their redox potentials. However, this oxidation was mediated by oxygen in case of complex 1 where H(2)O(2) was detected as the reaction product. The effectiveness of the mediators used in the presence of oxygen has been estimated using Pt and GC supports. The redox potential of the mediator does not depend on the support used, while the oxidation of H(2)O(2) proceeds on GC at much higher positive potentials than on Pt. The sensitivity and the linear concentration range of the biosensor studied varied significantly. For complex 4, which forms stable inclusion complex with beta-CD, the biosensor sensitivity was the highest and equal to 7.2 micro A mM(-1) cm(-2), detectability was as low as 1 mM, but the linear concentration range was limited only to 4 mM. In contrast, for complexes 2 and 3 the sensitivity was 0.4 and 3.2 micro A mM(-1) cm(-2), while the linear concentration range extended up to at least 24 and 14 mM glucose, respectively. Even though some common interfering substances, such as ascorbate, paracetamol or urea, are oxidized at potentials close to those of the Ru complex redox couples, their electro-oxidation currents at physiological concentrations are insignificant compared to those due to the biocatalytic oxidation of glucose. The biosensor response to glucose is reversible as demonstrated by the inhibition of GOD activity by Cu(II). That is, the Cu(II) concentration required to inhibit by half the response to glucose of the biosensor containing complex 2 was 1.0 mM. This inhibitory effect was fully reversed by addition of citrate, a ligand forming sufficiently stable complex with Cu(II).  相似文献   

14.
Cheung KC  Guo P  So MH  Zhou ZY  Lee LY  Wong KY 《Inorganic chemistry》2012,51(12):6468-6475
Ruthenium(II) terpyridine complexes containing the pyrrole-tagged 2,2'-dipyridylamine ligand PPP (where PPP stands for N-(3-bis(2-pyridyl)aminopropyl)pyrrole with the general formula [Ru(tpy)(PPP)X](n+) (1, X = Cl(-); 2, X = H(2)O; 3, X = CH(3)CN; tpy = 2,2':6',2"-terpyridine) have been synthesized and characterized by (1)H NMR, IR, UV-vis, mass spectrometry, and elemental analysis. 1 and 2 have been structurally characterized by X-ray crystallography. Both 1 and 2 were successfully immobilized onto glassy carbon electrode via anodic oxidation of the pyrrole moiety on the PPP ligand to give stable and highly electroactive polymer films. Cyclic voltammetric studies of 1 in acetonitrile revealed a Ru(III)/Ru(II) couple at 0.4 V vs Cp(2)Fe(+/0) initially, but another redox couple resulting from chloride substitution by acetonitrile developed at E(1/2) = 0.82 V upon repetitive potential scan. This ligand substitution was induced by the acidic local environment caused by the release of protons during pyrrole polymerization. The electropolymerization of 2 in aqueous medium allowed the observation of the formation of Ru(IV)═O species in polypyrrole film. As the film grew thicker, the size of the Ru(III)/(/)Ru(II) couple (E(1/2) = 0.8 V vs SCE at pH 1) of poly[Ru(tpy)(PPP)(OH(2))](n+) increased accordingly, whereas the growth of the Ru(IV)/Ru(III) couple (E(1/2) = 0.89 V vs SCE at pH 1) leveled off after the film had reached a certain thickness. The Pourbaix diagram of the E(1/2) of the Ru(III) /Ru(II) and Ru(IV)/Ru(III) couples vs pH of the electrolyte medium has been obtained. The resulting poly[Ru(tpy)(PPP)(OH(2))](n+) film is electrocatalytically active toward the oxidation of benzyl alcohol.  相似文献   

15.
Lam WW  Man WL  Wang YN  Lau TC 《Inorganic chemistry》2008,47(15):6771-6778
The kinetics and mechanisms of the oxidation of I (-) and Br (-) by trans-[Ru (VI)(N 2O 2)(O) 2] (2+) have been investigated in aqueous solutions. The reactions have the following stoichiometry: trans-[Ru (VI)(N 2O 2)(O) 2] (2+) + 3X (-) + 2H (+) --> trans-[Ru (IV)(N 2O 2)(O)(OH 2)] (2+) + X 3 (-) (X = Br, I). In the oxidation of I (-) the I 3 (-)is produced in two distinct phases. The first phase produces 45% of I 3 (-) with the rate law d[I 3 (-)]/dt = ( k a + k b[H (+)])[Ru (VI)][I (-)]. The remaining I 3 (-) is produced in the second phase which is much slower, and it follows first-order kinetics but the rate constant is independent of [I (-)], [H (+)], and ionic strength. In the proposed mechanism the first phase involves formation of a charge-transfer complex between Ru (VI) and I (-), which then undergoes a parallel acid-catalyzed oxygen atom transfer to produce [Ru (IV)(N 2O 2)(O)(OHI)] (2+), and a one electron transfer to give [Ru (V)(N 2O 2)(O)(OH)] (2+) and I (*). [Ru (V)(N 2O 2)(O)(OH)] (2+) is a stronger oxidant than [Ru (VI)(N 2O 2)(O) 2] (2+) and will rapidly oxidize another I (-) to I (*). In the second phase the [Ru (IV)(N 2O 2)(O)(OHI)] (2+) undergoes rate-limiting aquation to produce HOI which reacts rapidly with I (-) to produce I 2. In the oxidation of Br (-) the rate law is -d[Ru (VI)]/d t = {( k a2 + k b2[H (+)]) + ( k a3 + k b3[H (+)]) [Br (-)]}[Ru (VI)][Br (-)]. At 298.0 K and I = 0.1 M, k a2 = (2.03 +/- 0.03) x 10 (-2) M (-1) s (-1), k b2 = (1.50 +/- 0.07) x 10 (-1) M (-2) s (-1), k a3 = (7.22 +/- 2.19) x 10 (-1) M (-2) s (-1) and k b3 = (4.85 +/- 0.04) x 10 (2) M (-3) s (-1). The proposed mechanism involves initial oxygen atom transfer from trans-[Ru (VI)(N 2O 2)(O) 2] (2+) to Br (-) to give trans-[Ru (IV)(N 2O 2)(O)(OBr)] (+), which then undergoes parallel aquation and oxidation of Br (-), and both reactions are acid-catalyzed.  相似文献   

16.
In aqueous acidic solutions trans-[Ru(VI)(L)(O)(2)](2+) (L=1,12-dimethyl-3,4:9,10-dibenzo-1,12-diaza-5,8-dioxacyclopentadecane) is rapidly reduced by excess NO to give trans-[Ru(L)(NO)(OH)](2+). When ≤1 mol equiv NO is used, the intermediate Ru(IV) species, trans-[Ru(IV)(L)(O)(OH(2))](2+), can be detected. The reaction of [Ru(VI)(L)(O)(2)](2+) with NO is first order with respect to [Ru(VI)] and [NO], k(2)=(4.13±0.21)×10(1) M(-1) s(-1) at 298.0 K. ΔH(≠) and ΔS(≠) are (12.0±0.3) kcal mol(-1) and -(11±1) cal mol(-1) K(-1), respectively. In CH(3)CN, ΔH(≠) and ΔS(≠) have the same values as in H(2)O; this suggests that the mechanism is the same in both solvents. In CH(3)CN, the reaction of [Ru(VI)(L)(O)(2)](2+) with NO produces a blue-green species with λ(max) at approximately 650 nm, which is characteristic of N(2)O(3). N(2)O(3) is formed by coupling of NO(2) with excess NO; it is relatively stable in CH(3)CN, but undergoes rapid hydrolysis in H(2)O. A mechanism that involves oxygen atom transfer from [Ru(VI)(L)(O)(2)](2+) to NO to produce NO(2) is proposed. The kinetics of the reaction of [Ru(IV)(L)(O)(OH(2))](2+) with NO has also been investigated. In this case, the data are consistent with initial one-electron O(-) transfer from Ru(IV) to NO to produce the nitrito species [Ru(III)(L)(ONO)(OH(2))](2+) (k(2)>10(6) M(-1) s(-1)), followed by a reaction with another molecule of NO to give [Ru(L)(NO)(OH)](2+) and NO(2)(-) (k(2)=54.7 M(-1) s(-1)).  相似文献   

17.
A general method for the synthesis of chloro(polypyridyl)ruthenium conjugated peptide complexes via a solid-phase strategy is described. The method is applied to synthesize two positional isomers of the complex [Ru(terpy)(4-CO2H-4'-Mebpy-Gly-L-His-L-LysCONH2)Cl](PF6). Even though the separation of the isomers was only partially achieved chromatographically, the isomers were unambiguously assigned by NMR spectroscopy. The interactions of the complex [Ru(terpy)(4-CO2H-4'-Mebpy-Gly-L-His-L-LysCONH2)Cl](PF6) with CT-DNA and plasmid DNA, have been studied with various spectroscopic techniques, showing that (i) the complexes coordinatively bind to DNA preferring the bases guanine and cytosine over the bases thymine and adenine after hydrolysis of the coordinated chloride, (ii) electrostatic interactions between the complex cation and the polyanionic DNA chain assist this binding (iii) only in the case of one isomer the peptide does interact further with DNA as evidenced from 31P NMR spectroscopy, (iv) DNA unwinding occurs in all cases with high binding ratio (Ru/base) values (r > 0.3).  相似文献   

18.
The mediation of dipolar ruthenium(II) ammine complexes containing pyridinium ions [Ru(NH(3))(5)(L(+))](3+)(L(+): pyridinium ions) in glucose oxidation has been investigated by a voltammetric method. These ruthenium(II) complexes had appropriate redox potentials of 0.10-0.18 V vs. Ag/AgCl and high k(s) values of 5.7-17 x 10(6) M(-1) s(-1) which are the second-order rate constants for electron transfer from glucose oxidase in reduced form to [Ru(NH(3))(5)(L(+))](4+). In particular, the k(s) values for [Ru(NH(3))(5)(L(+))](3+) were greater than those of osmium(II)-polypyridine complexes possessing similar redox potentials which are most commonly used. All the dipolar ruthenium(II) complexes used in this study are therefore concluded to be useful for the electron transfer mediators of amperometric glucose sensors.  相似文献   

19.
The ruthenium oxyl radical complex, [Ru(II)(trpy)(Bu(2)SQ)O(.-)] (trpy = 2,2':6',2"-terpyridine, Bu(2)SQ = 3,5-di-tert-butyl-1,2-benzosemiquinone) was prepared for the first time by the double deprotonation of the aqua ligand of [Ru(III)(trpy)(Bu(2)SQ)(OH(2))](ClO(4))(2). [Ru(III)(trpy)(Bu(2)SQ)(OH(2))](ClO(4))(2) is reversibly converted to [Ru(III)(trpy)(Bu(2)SQ)(OH-)](+) upon dissociation of the aqua proton (pK(a) 5.5). Deprotonation of the hydroxo proton gave rise to intramolecular electron transfer from the resultant O(2-) to Ru-dioxolene. The resultant [Ru(II)(trpy)(Bu(2)SQ)O(.-)] showed antiferromagnetic behavior with a Ru(II)-semiquinone moiety and oxyl radical, the latter of which was characterized by a spin trapping technique. The most characteristic structural feature of [Ru(II)(trpy)(Bu(2)SQ)O(.-)] is a long Ru-O bond length (2.042(6) A) as the first terminal metal-O bond with a single bond length. To elucidate the substituent effect of a quinone ligand, [Ru(III)(trpy)(4ClSQ)(OH(2))](ClO(4))(2) (4ClSQ = 4-chloro-1,2-benzosemiquinone) was prepared and we compared the deprotonation behavior of the aqua ligand with that of [Ru(III)(trpy)(Bu(2)SQ)(OH(2))](ClO(4))(2). Deprotonation of the aqua ligand of [Ru(III)(trpy)(4ClSQ)(OH(2))](ClO(4))(2) induced intramolecular electron transfer from OH- to the [Ru(III)(4ClSQ)] moiety affording [Ru(II)(trpy)(4ClSQ)(OH.)]+, which then probably changed to [Ru(II)(trpy)(4ClSQ)O(.-)]. The antiferromagnetic interactions (J values) between Ru(II)-semiquinone and the oxyl radical for [Ru(II)(trpy)(Bu(2)SQ)O(.-)] and for [Ru(II)(trpy)(4ClSQ)O(.-)] were 2J = -0.67 cm(-1) and -1.97 cm(-1), respectively.  相似文献   

20.
Two novel water soluble ruthenium(II) complexes [Ru(bpy)(2)(bqbg)](2+) and [Ru(phen)(2)(bqbg)](2+) have been structurally characterized and their DNA condensation activity, cytotoxicity, and cellular uptake studies of DNA condensates as potential non-viral DNA carriers were evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号