首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
A branch-and-bound algorithm to solve 0–1 parametric mixed integer linear programming problems has been developed. The present algorithm is an extension of the branch-and-bound algorithm for parametric analysis on pure integer programming. The characteristic of the present method is that optimal solutions for all values of the parameter can be obtained.  相似文献   

2.
In this paper, we consider the Bilevel Knapsack Problem (BKP), which is a hierarchical optimization problem in which the feasible set is determined by the set of optimal solutions for a parametric Knapsack Problem. We introduce a new reformulation of the BKP into a one-level integer programming problem using dynamic programming. We propose an algorithm that allows the BKP to be solved exactly in two steps. In the first step, a dynamic programming algorithm is used to compute the set of follower reactions to leader decisions. In the second step, an integer problem that is equivalent to the BKP is solved using a branch-and-bound algorithm. Numerical results are presented to show the performance of our method.  相似文献   

3.
When regarded as a shortest route problem, an integer program can be seen to have a particularly simple structure. This allows the development of an algorithm for finding thek th best solution to an integer programming problem with max{O(kmn), O(k logk)} operations. Apart from its value in the parametric study of an optimal solution, the approach leads to a general integer programming algorithm consisting of (1) problem relaxation, (2) solution of the relaxed problem parametrically by dynamic programming, and (3) generation ofk th best solutions until a feasible solution is found. Elementary methods based on duality for reducingk for a given problem relaxation are then outlined, and some examples and computational aspects are discussed.  相似文献   

4.
This paper presents a solution method for the general (mixed integer) parametric linear complementarity problem pLCP(q(θ),M), where the matrix M has a general structure and integrality restriction can be enforced on the solution. Based on the equivalence between the linear complementarity problem and mixed integer feasibility problem, we propose a mixed integer programming formulation with an objective of finding the minimum 1-norm solution for the original linear complementarity problem. The parametric linear complementarity problem is then formulated as multiparametric mixed integer programming problem, which is solved using a multiparametric programming algorithm. The proposed method is illustrated through a number of examples.  相似文献   

5.
We consider discrete bilevel optimization problems where the follower solves an integer program with a fixed number of variables. Using recent results in parametric integer programming, we present polynomial time algorithms for pure and mixed integer bilevel problems. For the mixed integer case where the leader’s variables are continuous, our algorithm also detects whether the infimum cost fails to be attained, a difficulty that has been identified but not directly addressed in the literature. In this case, it yields a “better than fully polynomial time” approximation scheme with running time polynomial in the logarithm of the absolute precision. For the pure integer case where the leader’s variables are integer, and hence optimal solutions are guaranteed to exist, we present an algorithm which runs in polynomial time when the total number of variables is fixed.  相似文献   

6.
The present paper develops an algorithm for ranking the integer feasible solutions of a quadratic integer programming (QIP) problem. A linear integer programming (LIP) problem is constructed which provides bounds on the values of the objective function of the quadratic problem. The integer feasible solutions of this related integer linear programming problem are systematically scanned to rank the integer feasible solutions of the quadratic problem in non-decreasing order of the objective function values. The ranking in the QIP problem is useful in solving a nonlinear integer programming problem in which some other complicated nonlinear restrictions are imposed which cannot be included in the simple linear constraints of QIP, the objective function being still quadratic.  相似文献   

7.
In this paper, we present a novel algorithm for the solution of multiparametric mixed integer linear programming (mp-MILP) problems that exhibit uncertain objective function coefficients and uncertain entries in the right-hand side constraint vector. The algorithmic procedure employs a branch and bound strategy that involves the solution of a multiparametric linear programming sub-problem at leaf nodes and appropriate comparison procedures to update the tree. McCormick relaxation procedures are employed to overcome the presence of bilinear terms in the model. The algorithm generates an envelope of parametric profiles, containing the optimal solution of the mp-MILP problem. The parameter space is partitioned into polyhedral convex critical regions. Two examples are presented to illustrate the steps of the proposed algorithm.  相似文献   

8.
The zero-one integer programming problem and its special case, the multiconstraint knapsack problem frequently appear as subproblems in many combinatorial optimization problems. We present several methods for computing lower bounds on the optimal solution of the zero-one integer programming problem. They include Lagrangean, surrogate and composite relaxations. New heuristic procedures are suggested for determining good surrogate multipliers. Based on theoretical results and extensive computational testing, it is shown that for zero-one integer problems with few constraints surrogate relaxation is a viable alternative to the commonly used Lagrangean and linear programming relaxations. These results are used in a follow up paper to develop an efficient branch and bound algorithm for solving zero-one integer programming problems.  相似文献   

9.
Cross decomposition for mixed integer programming   总被引:6,自引:0,他引:6  
Many methods for solving mixed integer programming problems are based either on primal or on dual decomposition, which yield, respectively, a Benders decomposition algorithm and an implicit enumeration algorithm with bounds computed via Lagrangean relaxation. These methods exploit either the primal or the dual structure of the problem. We propose a new approach, cross decomposition, which allows exploiting simultaneously both structures. The development of the cross decomposition method captures profound relationships between primal and dual decomposition. It is shown that the more constraints can be included in the Langrangean relaxation (provided the duality gap remains zero), the fewer the Benders cuts one may expect to need. If the linear programming relaxation has no duality gap, only one Benders cut is needed to verify optimality.  相似文献   

10.
文[9,10]设计了直接求整数规划问题近似解的填充函数算法,但其所利用的文[2,3]的填充函数均带有参数,需要在算法过程中逐步调节。本文建立整数规划的广义填充函数的定义,说明了文[9,10]所利用的填充函数是整数规划问题的广义填充函数,并构造了一类不带参数的广义填充函数。进而本文设计了整数规划的一类不带参数的广义填充函数算法,数值试验表明算法是有效的。  相似文献   

11.
在证券交易市场中,交易规则要求购买的股票数量为整数.基于这种情况,将Markowitz模型中资产的投资比例改进为资产的投资数量,构造了一个二次整数规划模型.设计了求解该模型的算法,经过实证分析,算法是有效的.  相似文献   

12.
This paper concentrates on a shortest path problem on a network where arc lengths (costs) are not deterministic numbers, but imprecise ones. Here, costs of the shortest path problem are fuzzy intervals with increasing membership functions, whereas the membership function of the total cost of the shortest path is a fuzzy interval with a decreasing linear membership function. By the max–min criterion suggested in [R.E. Bellman, L.A. Zade, Decision-making in a fuzzy environment, Management Science 17B (1970) 141–164], the fuzzy shortest path problem can be treated as a mixed integer nonlinear programming problem. We show that this problem can be simplified into a bi-level programming problem that is very solvable. Here, we propose an efficient algorithm, based on the parametric shortest path problem for solving the bi-level programming problem. An illustrative example is given to demonstrate our proposed algorithm.  相似文献   

13.
陈志平  郤峰 《计算数学》2004,26(4):445-458
针对现有分枝定界算法在求解高维复杂二次整数规划问题时所存在的诸多不足,本文通过充分挖掘二次整数规划问题的结构特性来设计选择分枝变量与分枝方向的新方法,并将HNF算法与原问题松弛问题的求解相结合来寻求较好的初始整数可行解,由此导出可用于有效求解中大规模复杂二次整数规划问题的改进型分枝定界算法.数值试验结果表明所给算法大大改进了已有相关的分枝定界算法,并具有较好的稳定性与广泛的适用性.  相似文献   

14.
This paper presents a backward state reduction dynamic programming algorithm for generating the exact Pareto frontier for the bi-objective integer knapsack problem. The algorithm is developed addressing a reduced problem built after applying variable fixing techniques based on the core concept. First, an approximate core is obtained by eliminating dominated items. Second, the items included in the approximate core are subject to the reduction of the upper bounds by applying a set of weighted-sum functions associated with the efficient extreme solutions of the linear relaxation of the multi-objective integer knapsack problem. Third, the items are classified according to the values of their upper bounds; items with zero upper bounds can be eliminated. Finally, the remaining items are used to form a mixed network with different upper bounds. The numerical results obtained from different types of bi-objective instances show the effectiveness of the mixed network and associated dynamic programming algorithm.  相似文献   

15.
求解摩擦接触问题的一个非内点光滑化算法   总被引:8,自引:0,他引:8  
给出了一个求解三维弹性有摩擦接触问题的新算法,即基于NCP函数的非内点光滑化算法.首先通过参变量变分原理和参数二次规划法,将三维弹性有摩擦接触问题的分析归结为线性互补问题的求解;然后利用NCP函数,将互补问题的求解转换为非光滑方程组的求解;再用凝聚函数对其进行光滑化,最后用NEWTON法解所得到的光滑非线性方程组.方法具有易于理解及实现方便等特点.通过线性互补问题的数值算例及接触问题实例证实了该算法的可靠性与有效性.  相似文献   

16.
We present branching-on-hyperplane methods for solving mixed integer linear and mixed integer convex programs. In particular, we formulate the problem of finding a good branching hyperplane using a novel concept of adjoint lattice. We also reformulate the problem of rounding a continuous solution to a mixed integer solution. A worst case complexity of a Lenstra-type algorithm is established using an approximate log-barrier center to obtain an ellipsoidal rounding of the feasible set. The results for the mixed integer convex programming also establish a complexity result for the mixed integer second order cone programming and mixed integer semidefinite programming feasibility problems as a special case. Our results motivate an alternative reformulation technique and a branching heuristic using a generalized (e.g., ellipsoidal) norm reduced basis available at the root node.  相似文献   

17.
Several hybrid methods have recently been proposed for solving 0–1 mixed integer programming problems. Some of these methods are based on the complete exploration of small neighborhoods. In this paper, we present several convergent algorithms that solve a series of small sub-problems generated by exploiting information obtained from a series of relaxations. These algorithms generate a sequence of upper bounds and a sequence of lower bounds around the optimal value. First, the principle of a linear programming-based algorithm is summarized, and several enhancements of this algorithm are presented. Next, new hybrid heuristics that use linear programming and/or mixed integer programming relaxations are proposed. The mixed integer programming (MIP) relaxation diversifies the search process and introduces new constraints in the problem. This MIP relaxation also helps to reduce the gap between the final upper bound and lower bound. Our algorithms improved 14 best-known solutions from a set of 108 available and correlated instances of the 0–1 multidimensional Knapsack problem. Other encouraging results obtained for 0–1 MIP problems are also presented.  相似文献   

18.
This paper proposes a Benders-like partitioning algorithm to solve the network loading problem. The approach is an iterative method in which the integer programming solver is not used to produce the best integer point in the polyhedral relaxation of the set of feasible capacities. Rather, it selects an integer solution that is closest to the best known integer solution. Contrary to previous approaches, the method does not exploit the original mixed integer programming formulation of the problem. The effort of computing integer solutions is entirely left to a pure integer programming solver while valid inequalities are generated by solving standard nonlinear multicommodity flow problems. The method is compared to alternative approaches proposed in the literature and appears to be efficient for computing good upper bounds.  相似文献   

19.
We state an integer linear programming formulation for the unique characterization of complete simple games, i.e. a special subclass of monotone Boolean functions. In order to apply the parametric Barvinok algorithm to obtain enumeration formulas for these discrete objects we provide a tailored decomposition of the integer programming formulation into a finite list of suitably chosen sub-cases. As for the original enumeration problem of Dedekind on Boolean functions we have to introduce some parameters to be able to derive exact formulas for small parameters. Recently, Freixas et al. have proven an enumeration formula for complete simple games with two types of voters. We will provide a shorter proof and a new enumeration formula for complete simple games with two minimal winning vectors.  相似文献   

20.
Dinkelbach's algorithm was developed to solve convex fractinal programming. This method achieves the optimal solution of the optimisation problem by means of solving a sequence of non-linear convex programming subproblems defined by a parameter. In this paper it is shown that Dinkelbach's algorithm can be used to solve general fractional programming. The applicability of the algorithm will depend on the possibility of solving the subproblems. Dinkelbach's extended algorithm is a framework to describe several algorithms which have been proposed to solve linear fractional programming, integer linear fractional programming, convex fractional programming and to generate new algorithms. The applicability of new cases as nondifferentiable fractional programming and quadratic fractional programming has been studied. We have proposed two modifications to improve the speed-up of Dinkelbachs algorithm. One is to use interpolation formulae to update the parameter which defined the subproblem and another truncates the solution of the suproblem. We give sufficient conditions for the convergence of these modifications. Computational experiments in linear fractional programming, integer linear fractional programming and non-linear fractional programming to evaluate the efficiency of these methods have been carried out.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号