首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Latest studies on the chemical association of trace elements to large biomolecules and their importance on the bioinorganic and clinical fields are examined. The complexity of the speciation of metal-biomolecules associations in various biological fluids is stressed. Analytical strategies to tackle speciation analysis and the-state-of-the-art of the instrumentation employed for this purpose are critically reviewed. Hyphenated techniques based on coupling chromatographic separation techniques with ICP-MS detection are now established as the most realistic and potent analytical tools available for real-life speciation analysis. Therefore, the status and potential of metal and semimetals elemental speciation in large biocompounds using ICP-MS detection is mainly focused here by reviewing reported metallo-complexes separations using size-exclusion (SEC), ion-exchange (IE), reverse phase chromatography (RP) and capillary electrophoresis (CE). Species of interest include coordination complexes of metals with larger proteins (e.g. in serum, breat milk, etc.) and metallothioneins (e.g. in cytosols from animals and plants) as well as selenoproteins (e.g. in nutritional supplements), DNA-cisplatin adducts and metal/semimetal binding to carbohydrates. An effort is made to assess the potential of present trace elements speciation knowledge and techniques for "heteroatom-tagged" (via ICP-MS) proteomics.  相似文献   

2.
Elemental speciation is becoming a common analytical procedure for geochemical investigations. The various redox species of environmentally relevant metals can have vastly different biogeochemical properties, including sorption, solubility, bioavailability, and toxicity. The use of high performance liquid chromatography (HPLC) coupled to elemental specific detectors, such as inductively coupled plasma mass spectrometry (ICP-MS), has become one of the most important speciation methods employed. This is due to the separation versatility of HPLC and the sensitive and selective detection capabilities of ICP-MS. The current study compares standard mode ICP-MS to recently developed reaction cell (RC) ICP-MS, which has the ability to remove or reduce many common polyatomic interferences that can limit the ability of ICP-MS to quantitate certain analytes in complex matrices. Determination of chromium and selenium redox species is achieved using ion-exchange chromatography with elemental detection by standard and RC-ICP-MS, using various chromium and selenium isotopes. In this study, method performance and detection limits for the various permutations of the method (isotope monitored or ICP-MS detection mode) were found to be comparable and generally less than 1 μg L−1. The method was tested on synthetic laboratory samples, surface water, groundwater, and municipal tap water matrices.  相似文献   

3.
Capillary electrophoresis-inductively coupled plasma mass spectrometry (CE-ICP-MS) and electrospray (ES) or ion spray (IS) mass spectrometry (MS) are recently introduced techniques for elemental speciation. Both techniques have the potential for rapid elemental speciation with low detection limits. Examples of the use of CE-ICP-MS for elemental speciation of positive, neutral and negative species are discussed. Issues in interfacing CE and ICP-MS are considered briefly. The potential advantages and disadvantages of laminar flow in CE-ICP-MS are examined. Potential difficulties in CE-ICP-MS including loss of sample, chemical matrix effects and changes in speciation during separation are discussed. The interpretation of ES or IS-MS spectra and analysis of complex mixtures are considered. Calibration and chemical matrix effects are assessed. Potential pitfalls of interpreting bare metal ion spectra as elemental analysis are discussed. The need for fundamental understanding of the processes that control ES and IS-MS signals is examined. High conductivity samples currently present difficulties for CE-ICP-MS or ES and IS-MS.  相似文献   

4.
An analytical procedure for selenium speciation of analysis of selenourea (SeU), selenoethionine (SeE), selenomethionine (SeM), Se(VI), Se(IV), dimethylselenide (dMeSe) and dimethyldiselenide (dMedSe) was developed, based on two complementary liquid chromatography (LC) techniques coupled with inductively coupled plasma-mass spectrometry (ICP-MS). Specifically, strong anion exchange (SAX) chromatography coupled with ICP-MS was used for the separation and quantification of all the earlier mentioned Se compounds, except for the two methyl selenides, which could be separated and determined by reversed phase chromatography coupled with ICP-MS. This procedure was applied to a soil sample from the warm springs area of Thermopyles (Greece). For leaching the Se species from the soil sample, four extraction methods, using water at ambient temperature, hot water, methanol and 0.5 M HCl, were tested for their efficiency of extracting the different Se species. The speciation results obtained by the LC-ICP-MS methods were compared with those obtained by voltammetric techniques. The determination of total selenium in the sample was achieved by graphite furnace atomic absorption spectrometry, as well as by ICP-atomic emission spectrometry, after suitable digestion of the sediment sample.  相似文献   

5.
Separation techniques coupled to inductively coupled plasma mass spectrometry (ICP-MS) is reviewed. ICP-MS technique is described briefly. Coupling of the different separation techniques are described, together with the most common applications used for each technique that has been described in the literature. An overview for the future of separation techniques coupled to ICP-MS with regard to elemental speciation is discussed.  相似文献   

6.
Achievement of optimum selectivity, sensitivity and robustness in speciation analysis using high performance liquid chromatography (HPLC) with inductively coupled mass spectrometry (ICP-MS) detection requires that each instrumental component is selected and optimized with a view to the ideal operating characteristics of the entire hyphenated system. An isocratic HPLC system, which employs an aqueous mobile phase with organic buffer constituents, is well suited for introduction into the ICP-MS because of the stability of the detector response and high degree of analyte sensitivity attained. Anion and cation exchange HPLC systems, which meet these requirements, were used for the seperation of selenium and arsenic species in crude extracts of biological samples. Furthermore, the signal-to-noise ratios obtained for these incompletely ionized elements in the argon ICP were further enhanced by a factor of four by continously introducing carbon as methanol via the mobile phase into the ICP. Sources of error in the HPLC system (column overload), in the sample introduction system (memory by organic solvents) and in the ICP-MS (spectroscopic interferences) and their prevention are also discussed. The optimized anion and cation exchange HPLC-ICP-MS systems were used for arsenic speciation in contaminated ground water and in an in-house shrimp reference sample. For the purpose of verification, HPLC coupled with tandem mass spectrometry with electrospray ionization was additionally used for arsenic speciation in the shrimp sample. With this analytical technique the HPLC retention time in combination with mass analysis of the molecular ions and their collision-induced fragments provide almost conclusive evidence of the identity of the analyte species. The speciation methods are validated by establishing a mass balance of the analytes in each fraction of the extraction procedure, by recovery of spikes and by employing and comparing independent techniques. The urgent need for reference materials certified for elemental species is stressed.  相似文献   

7.
Some basic and practical aspects of interfacing capillary electrophoresis to inductively coupled plasma-mass spectrometry (CE-ICP-MS) are reviewed in this article with emphasis on the use of this hyphenated technique for elemental speciation analysis. The principles behind the techniques of both CE and ICP-MS are introduced. The interfacing of CE to ICP-MS is discussed including several devices and nebulizers reported in literature. A brief account of their advantages and limitations is given. The various CE-ICP-MS applications for elemental speciation analysis are also reviewed. Some issues concerning the future of CE-ICP-MS for the elemental speciation analyses are discussed.  相似文献   

8.
环境中金属纳米颗粒的分析检测不仅需要关注其浓度和化学组成,还需要对其形状、粒径和表面电荷等进行表征。此外,环境中金属纳米颗粒的分析需要解决其低赋存浓度以及复杂基质干扰的难题。无固定相分离技术与电感耦合等离子体质谱(ICP-MS)的在线联用,具有较强的颗粒分离能力和较低的元素检出限,能够快速准确地提供金属纳米颗粒的粒径分布、化学组成等信息,在金属纳米颗粒的分离检测方面表现出极大的潜能。但这一联用技术尚无法获得金属纳米颗粒物的颗粒数浓度和单个颗粒的元素信息,难以判断金属纳米颗粒涂层厚度、纯度以及颗粒的均相/异相团聚行为等。新兴的单颗粒-电感耦合等离子体质谱(SP-ICP-MS)与无固定相分离技术的在线联用,可以获得金属纳米颗粒的流体动力学粒径、元素质量计算粒径和颗粒数浓度等信息,进而弥补无固定相分离与ICP-MS在线联用技术的不足。该文介绍了流体动力色谱、毛细管电泳和场流分离3种常用无固定相分离技术的分离机制和适用检测器,着重综述了无固定相分离技术与ICP-MS/SP-ICP-MS在线联用技术的特点及其在环境金属纳米颗粒分析中的应用。关于场流分离,主要介绍了可以与ICP-MS联用的沉降场流分离和流场流分离。该文还对流体动力色谱、毛细管电泳和流场流分离与ICP-MS在线联用技术的特点进行了比较。最后,该文对无固定相分离技术与ICP-MS/SP-ICP-MS在线联用技术的发展提出了展望。  相似文献   

9.
In recent years the number of environmental applications of elemental speciation analysis using inductively coupled plasma mass spectrometry (ICP-MS) as detector has increased significantly. The analytical characteristics, such as extremely low detection limits (LOD) for almost all elements, the wide linear range, the possibility for multi-elemental analysis and the possibility to apply isotope dilution mass spectrometry (IDMS) make ICP-MS an attractive tool for elemental speciation analysis. Two methodological approaches, i.e. the combination of ICP-MS with high performance liquid chromatography (HPLC) and gas chromatography (GC), dominate the field. Besides the investigation of metals and metalloids and their species (e.g. Sn, Hg, As), representing “classic” elements in environmental science, more recently other elements (e.g. P, S, Br, I) amenable to ICP-MS determination were addressed. In addition, the introduction of isotope dilution analysis and the development of isotopically labeled species-specific standards have contributed to the success of ICP-MS in the field. The aim of this review is to summarize these developments and to highlight recent trends in the environmental application of ICP-MS coupled to GC and HPLC.  相似文献   

10.
The application of reversed phase liquid chromatography (RP-LC) hyphenated to inductively coupled plasma mass spectrometry (ICP-MS) for the accurate quantification of bio-molecules via covalently bound hetero atoms such as phosphorus is restricted, due to the known effects of increasing amounts of organic solvents on the ionization behavior of certain elements. An approach for the compensation of variations in the elemental response, due to changes in the solvent composition during the RP gradient separation of phosphorylated peptides is described, which includes the application of a second, matched reversed gradient, that is mixed post-column with the RP column outflow before entering the LC–ICP-MS interface. The experimental design allows the application of gradient separations, while the element-specific detection is carried out under isocratic conditions with a constant organic solvent intake into the plasma. A constant elemental response is a general pre-requisite for the application of ICP-MS for the absolute quantification of peptides via their hetero atom content, especially when no corresponding high purity standards are available or natural mono-isotopic hetero element tags are utilized. As complementary technique LC–electrospray ionization linear ion trap mass spectrometry (ESI-QTRAP-MS) has been used for peptide identification and to elucidate their phosphorus stoichiometry. Highly reproducible separations have been obtained with retention time and peak area RSDs of 0.05% and 7.6% (n = 6), respectively. Detection limits for phosphorus of 6 μg L−1 (6 pg absolute), have been realized, which corresponds to approximately 200 fmol of an average molecular weight, singly phosphorylated peptide. In addition an automatic routine for flow injection analysis (FIA) at the end of each chromatographic separation has been developed, to calibrate each chromatographic separation, which allows absolute quantification of the separated species, whenever their tag stoichiometry is known. Phosphorylated peptides as well as tryptic protein digests have been used as model compounds for method development and to demonstrate the applicability of the proposed setup for phosphopeptide quantification on the basis of simple inorganic phosphorus standards.  相似文献   

11.
Summary Gradient reversed-phase liquid chromatography was examined with a view to using it as a separation technique for the speciation of vanadyl and nickel porphyrins in oil extracts. Poor separations were obtained when precipitation of the sample constituents occurred in the starting mobile phase. The reasons for the precipitation phenomena were found to be highly complex. Mixed crystal formation, slow dissolution kinetics and saturation may influence the elution behaviour of species present in the oil extracts. When precipitation was avoided the separation of the vanadyl porphyrins was significantly improved. Thus far, no satisfactory separations have been obtained for the nickel porphyrinic species.Although the occurrence of precipitation of the extracts hinders the distinct speciation of metalloporphyrins with reversed phase chromatography, the precipitation/dissolution phenomena showed some interesting features as a clean-up step for diluted crude oil samples and oil fractions.  相似文献   

12.
Inorganic mass spectrometry techniques may offer great potential for the characterisation at the nanoscale, because they provide unique elemental information of great value for a better understanding of processes occurring at nanometre-length dimensions. Two main groups of techniques are reviewed: those allowing direct solid analysis with spatial resolution capabilities, i.e. lateral (imaging) and/or in-depth profile, and those for the analysis of liquids containing colloids. In this context, the present capabilities of widespread elemental mass spectrometry techniques such as laser ablation coupled with inductively coupled plasma mass spectrometry (ICP-MS), glow discharge mass spectrometry and secondary ion/neutral mass spectrometry are described and compared through selected examples from various scientific fields. On the other hand, approaches for the characterisation (i.e. size, composition, presence of impurities, etc.) of colloidal solutions containing nanoparticles by the well-established ICP-MS technique are described. In this latter case, the capabilities derived from the on-line coupling of separation techniques such as field-flow fractionation and liquid chromatography with ICP-MS are also assessed. Finally, appealing trends using ICP-MS for bioassays with biomolecules labelled with nanoparticles are delineated.   相似文献   

13.
Since years, ion exclusion chromatography (ICE) has been the standard method to separate strong acid analyte anions from concentrated weak acid matrices such as hydrofluoric acid (HF). In this work, the commercially available IonPac ICE-AS 1 column was used to separate trace levels of chloride, nitrate, sulfate and phosphate from HF solutions at 20% (w/w). The efficiency of the separation was studied in more detail using techniques such as ion chromatography (IC), inductively coupled plasma optical emission spectrometry (ICP-OES) and ICP-mass spectrometry (ICP-MS). For 20% (w/w) HF solutions and at a water carrier flow-rate of 0.50 ml/min, the cut window was set from 8.5 to 14.5 min. Under these conditions, analyte recoveries of better than 90% were obtained for chloride, nitrate and sulfate, but only about 75% for phosphate. The HF rejection efficiency was better than 99.9%. It was found that the ICP techniques, measuring total element levels and not species, yielded significantly higher recoveries for phosphorus and sulfur compared to IC. Evidence will be given that part of the added phosphorus (approximately 15% for an addition of 10 mg PO4/kg) is present as mono-fluorophosphoric acid (H2FPO3). In the case of sulfate, the difference between IC and ICP-MS could be attributed to an important matrix effect from the residual HF concentration.  相似文献   

14.
Inductively coupled plasma-MS (ICP-MS) and its combined use with molecular mass spectrometric techniques have become the most promising detection techniques in speciation studies. High sensitivity and element specificity of ICP-MS has the advantage of detecting trace amounts of the species of interest in complex matrices. This review is divided into two parts. In the first part, suitable use of ICP-MS either online or offline with currently used separation techniques such as HPLC, CE, and gel electrophoresis in speciation analysis is briefly discussed. In the second part, recent applications (1999-2005) of phosphorus speciation is presented to elucidate the importance of ICP-MS in separation methods and to illustrate its importance in nonmetal detection.  相似文献   

15.
Abstract

Alkyl-modified silica (RSi) and polystyrenedivinylbenzene (PRP-1) stationary phases are compared for the chromatographic separation of inorganic analyte anions and cations using hydro-phobic ions of opposite charge as mobile phase additives. Tetra-alkylammonium salts were used for anion separations and alkyl sulfonate salts for cation separations. Two major equilibria influence the retention of analyte ions on PRP-1. These are: retention of the hydrophobic ion on PRP-1 and an ion exchange selectivity between the hydrophobic counterion and the analyte ion. When using RSi retention is also influenced by ion exchange at residual silanol groups, which act as weak cation exchange sites. Mobile and stationary phase variables that influence analyte retention are identified. Optimization of these provides favorable eluting conditions for the separation of inorganic ionic analytes. Of particular interest is the potential use of PRP-1 and RSi columns for the separation of inorganic cations; conditions for the separation of alkali metals and alkaline earths are discussed.  相似文献   

16.
Inductively coupled plasma-mass spectrometry (ICP-MS) has definitely emerged as a powerful technique for total element determination and as a sensitive and selective detector in hyphenated methods for speciation analyses of elements in foods. In this review, the analytical challenges of elemental analysis of food and agricultural matrixes are discussed and several applications are examined. Selected examples illustrate the analytical approaches being used so far to address specific issues in various areas of food and nutrition research. The applications discussed include studies on dietary intake, element metabolism in man, transfer of elements through the food chain, effects of food processing and domestic preparation, and authenticity and origin assessment. The use of ICP-MS in the field of analytical quality assurance, food control, evaluation of food contact materials, and radionuclide contamination is also examined. Finally, the hyphenated techniques with ICP-MS detection used for elemental speciation in food are reviewed, and an overview of the main applications currently in the literature is presented. Throughout, recent trends and analytical developments likely to have a major impact on food-related areas are highlighted.  相似文献   

17.
《Analytica chimica acta》2005,547(2):172-178
A suppression of silanophilic interactions by the selected ionic liquids added to the mobile phase in thin-layer chromatography (TLC) and high-performance liquid chromatography (HPLC) is reported. Acetonitrile was used as the eluent, alone or with various concentrations of water and phosphoric buffer pH 3. Selectivity of the normal (NP) and the reversed (RP) stationary phase material was examined using a series of proton-acceptor basic drugs analytes. The ionic liquids studied appeared to significantly affect analyte retention in NP-TLC, RP-TLC and RP-HPLC systems tested. Consequently, the increased separation selectivity was attained. Due to ionic liquid additives to eluent even analytes could be chromatographed, which were not eluted from the silica-based stationary phase materials with 100% of acetonitrile in the mobile phase. Addition of ionic liquid already in very small concentration (0.5%, v/v) could reduce the amount of acetonitrile used during the optimization of basic analytes separations in TLC and HPLC systems. Moreover, the influence of temperature on the separation of basic analytes was demonstrated and considered in practical HPLC method development.  相似文献   

18.
The global crisis resulting from adulterated heparin in late 2007 and early 2008 revived the importance of analytical techniques for the purity analysis of heparin products. The utilization of ion chromatography techniques for the separation, detection, and structural determination of heparin and structurally related glycoaminoglycans, including their corresponding oligosaccharides, has become increasingly important. This review summarizes the primary HPLC approaches, particularly strong anion exchange, weak ion exchange, and reversed‐phase ion‐pair, used for heparin purity analysis as well as structural characterization. Strong anion exchange HPLC has been studied most extensively and currently offers the best separation of crude heparin and heparin‐like compounds. Weak anion exchange HPLC has been shown to provide shorter analysis times with lower salt concentrations in the mobile phase but is not as widely developed for the separation of all glycoaminoglycans of interest. Reversed‐phase ion‐pair HPLC offers fast and effective separations of oligosaccharides derived from glycoaminoglycans that can be coupled to mass spectrometry for structural analysis. However, this method generally does not provide sufficient retention of intact glycoaminoglycans.  相似文献   

19.
The speciation of Mn(II) and Mn(VII) is reported by ion pair chromatography. To optimize the separation, sample pH, ion pair reagent, Mn(II) complexing agent, and composition of mobile phase were characterized. The separation of Mn(II) and Mn(VII) was performed using ethylenediamine tetraacetic acid to complex Mn(II), tetrabutylammonium hydroxide as an ion pair reagent, and a C8 column. The separation of the manganese species was demonstrated by high-performance liquid chromatography-inductively coupled plasma mass spectrometry (HPLC ICP-MS). The conversion of Mn(VII) to Mn(II) occurred during the separation and influenced the quantification; hence, the factors affecting this process including the storage time, manganese species ratio, and sample matrix composition were evaluated and suitable calibration was demonstrated. The method was validated by characterization of the selectivity, specificity, linearity, limits of detection and quantification, repeatability, and intermediate precision. The detection limit for Mn(II) was 0.22 µg?L?1, while for Mn(VII), the value was 1.55 µg?L?1.  相似文献   

20.
Method development and applications of hyphenated techniques as tools for speciation analysis of metal-based pharmaceuticals are summarized within this review. Advantages and limitations of the separation modes-high-performance liquid chromatography (HPLC), capillary electrophoresis (CE), and gas chromatography (GC)-as well as the detection modes-inductively coupled plasma-mass spectrometry (ICP-MS) and electrospray ionization-mass spectrometry (ESI-MS)-are discussed. ICP-MS detection is found to be advantageous for the quantification of drugs containing metals and other heteroatoms. The species-independent sensitivity and multielement capabilities of ICP-MS allow it to be used for quantification even when species-specific standards are not available, as well as to determine the stoichiometry in metallodrug-biomolecule interactions. Molecular information that is totally destroyed when ICP is applied as ionization source and is therefore not obtainable via ICP-MS detection can be accessed by the complementary technique of ESI-MS. Speciation analysis combining both elemental and molecular information is therefore a powerful tool for the analysis of metal-based pharmaceuticals and their metabolites in body fluids and other relevant matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号